自适应变异粒子群算法 matlab代码实现
时间: 2023-09-29 08:02:45 浏览: 243
自适应变异粒子群算法(Adaptive Mutation Particle Swarm Optimization,AMPSO)是一种改进的粒子群算法,它能够自适应地调整变异概率,从而增强算法的全局搜索能力和收敛速度。下面是MATLAB代码实现:
```matlab
function [gbest,gbestval]=AMPSO(fhd,nop,dim,max_iter,xmin,xmax)
% fhd: function handle of the objective function
% nop: number of particles
% dim: dimension of the problem
% max_iter: maximum number of iterations
% xmin, xmax: lower and upper bounds of the search space
% gbest: global best position
% gbestval: global best value
% initialization
w=0.729; % inertia weight
c1=1.49445; % acceleration coefficients
c2=1.49445;
vmax=(xmax-xmin)/2; % maximum velocity
vmin=-vmax; % minimum velocity
pm=0.1; % initial mutation probability
pm_max=0.5; % maximum mutation probability
pm_min=0.01; % minimum mutation probability
pm_inc=0.01; % mutation probability increment
pm_dec=0.005; % mutation probability decrement
pm_updt=50; % mutation probability update interval
pm_cnt=0; % mutation probability update counter
gbest=ones(1,dim)*Inf; % initialize global best position
gbestval=Inf; % initialize global best value
pbest=zeros(nop,dim); % initialize personal best positions
pbestval=Inf*ones(nop,1); % initialize personal best values
x=xmin+rand(nop,dim).*(xmax-xmin); % initialize positions
v=vmin+rand(nop,dim).*(vmax-vmin); % initialize velocities
mut=zeros(nop,dim); % initialize mutations
for i=1:nop
fval=fhd(x(i,:));
if fval<pbestval(i)
pbest(i,:)=x(i,:);
pbestval(i)=fval;
end
if fval<gbestval
gbest=x(i,:);
gbestval=fval;
end
end
for iter=1:max_iter
% update velocities
r1=rand(nop,dim);
r2=rand(nop,dim);
v=w.*v+c1.*r1.*(pbest-x)+c2.*r2.*(ones(nop,1)*gbest-x);
% check velocity limits
v=min(max(v,vmin),vmax);
% update positions
x=x+v;
% check position limits
x=min(max(x,xmin),xmax);
% evaluate objective function
for i=1:nop
fval=fhd(x(i,:));
if fval<pbestval(i)
pbest(i,:)=x(i,:);
pbestval(i)=fval;
if fval<gbestval
gbest=x(i,:);
gbestval=fval;
end
end
end
% update mutation probability
pm_cnt=pm_cnt+1;
if pm_cnt==pm_updt
if gbestval==Inf
pm=pm/2;
else
pm=pm+pm_inc*(pm_max-pm)/(pm_max*gbestval+eps);
pm=max(pm,pm_min);
pm=min(pm,pm_max);
pm_cnt=0;
end
end
% generate mutations
for i=1:nop
if rand<pm
mut(i,:)=randn(1,dim).*(xmax-xmin)/10;
else
mut(i,:)=zeros(1,dim);
end
end
% update positions with mutations
x=x+mut;
% check position limits
x=min(max(x,xmin),xmax);
end
end
```
代码中,首先定义了一些算法参数,包括惯性权重w、加速系数c1和c2、最大和最小速度vmax和vmin、初始变异概率pm、变异概率的最大值和最小值pm_max和pm_min、变异概率的增量和减量pm_inc和pm_dec、变异概率更新的间隔pm_updt等。然后进行初始化,包括粒子位置x、速度v、个体最优位置pbest、个体最优值pbestval、全局最优位置gbest和全局最优值gbestval。接着进行迭代,每次迭代包括以下步骤:
1. 更新粒子速度v;
2. 检查速度限制;
3. 更新粒子位置x;
4. 检查位置限制;
5. 计算粒子适应度,更新个体最优位置和全局最优位置;
6. 更新变异概率pm;
7. 生成变异向量;
8. 更新粒子位置x。
最后输出全局最优位置gbest和全局最优值gbestval。
需要注意的是,这段代码是一种基本的实现,具体应用时需要根据具体问题进行适当修改。
阅读全文