yolov5v6.1代码下载

时间: 2023-11-24 19:03:21 浏览: 63
要下载 YOLOv5 v6.1 代码,请按照以下步骤进行操作: 1. 打开 Github 官网,网址为 "https://github.com/ultralytics/yolov5"。 2. 点击页面右上角的 "Code(代码)" 按钮,会出现一个下拉菜单。 3. 在下拉菜单中,您可以选择通过两种方式进行代码下载。 - 如果您有 Git 的下载工具,并想通过 Git 克隆整个代码库,请复制提供的链接,然后在命令行中运行 "git clone" 命令,并将链接粘贴到命令中,然后按下回车键开始下载。 - 如果您不熟悉 Git 或者只是希望下载代码的 zip 文件,请点击 "Download ZIP(下载 ZIP)",等待下载链接生成,并保存到您选择的目录中。 4. 下载完成后,您可以解压缩 zip 文件并访问解压后的文件夹。您将在文件夹中找到包含 YOLOv5 v6.1 代码的所有文件和文件夹。 5. 使用您熟悉的代码编辑器或开发环境打开下载的文件夹,并开始使用 YOLOv5 v6.1 的代码。 请记住,您可能还需要安装一些依赖项和必备的 Python 环境,以确保成功运行 YOLOv5 v6.1 代码。为了获得更详细的安装说明和使用指南,建议您查阅代码库中的文档或参考项目的 README 文件。
相关问题

yolov5-v6.1 部署

你好!部署 YOLOv5 v6.1 可以按照以下步骤进行: 1. 安装依赖:首先,确保你的系统已经安装了 Python 3.8+ 和 PyTorch 1.7+。然后,使用以下命令安装所需的依赖: ``` $ pip install torch torchvision torchaudio $ pip install opencv-python $ pip install matplotlib $ pip install numpy ``` 2. 下载 YOLOv5:可以从 YOLOv5 的 GitHub 仓库中下载最新的代码。使用以下命令克隆仓库: ``` $ git clone https://github.com/ultralytics/yolov5.git $ cd yolov5 ``` 3. 下载权重文件:从 YOLOv5 的发布页面下载预训练权重文件。将下载的权重文件保存在 `yolov5/weights` 目录下。 4. 检测图像或视频:使用以下命令运行 YOLOv5 进行图像或视频的检测: ``` $ python detect.py --weights weights/yolov5s.pt --img 640 --conf 0.4 --source path/to/input ``` 其中,`--weights` 参数指定了预训练权重文件的路径,`--img` 参数指定了输入图像的大小,`--conf` 参数指定了置信度阈值,`--source` 参数指定了输入图像或视频的路径。 这些步骤可以帮助你部署 YOLOv5 v6.1,并进行图像或视频的目标检测。希望对你有所帮助!如果还有其他问题,请随时提问。

ResRep 剪枝方法 YOLOv5 6.1中的应用,完整详细代码复现

ResRep 剪枝方法是一种基于残差网络的剪枝方法,可以有效地减少神经网络模型的参数和计算量,同时保持模型的精度。 在 YOLOv5 6.1 版本中,已经应用了 ResRep 剪枝方法,可以通过以下步骤进行完整详细代码复现: 1. 下载 YOLOv5 6.1 版本的代码,并安装相关依赖。 ``` git clone https://github.com/ultralytics/yolov5.git cd yolov5/ pip install -r requirements.txt ``` 2. 下载 COCO 数据集,并将其放在 `data/` 文件夹中。 ``` mkdir data/ cd data/ wget https://github.com/ultralytics/yolov5/releases/download/v6.0/coco128.zip unzip coco128.zip cd .. ``` 3. 在 `models/yolov5s.yaml` 文件中,修改模型的 `anchors`、`nc` 和 `depth_multiple` 参数。 ``` anchors: - [10,13, 16,30, 33,23] # P3/8 - [30,61, 62,45, 59,119] # P4/16 - [116,90, 156,198, 373,326] # P5/32 nc: 80 depth_multiple: 0.33 ``` 4. 在 `train.py` 文件中,修改训练参数,包括 `epochs`、`batch-size` 和 `img-size` 等。 ``` python train.py --img 640 --batch 16 --epochs 300 --data coco.yaml --cfg models/yolov5s.yaml --weights '' --name yolov5s_resrep ``` 5. 在 `models/yolo.py` 文件中,添加 ResRep 剪枝方法的相关代码,包括 `resrep_prune()` 和 `forward` 函数的修改。 ``` import torch.nn as nn import torch.nn.functional as F from models.common import Conv, Bottleneck, SPP, DWConv, Focus, Concat from utils.torch_utils import time_synchronized class ResRep(nn.Module): def __init__(self, model, prune_idx): super(ResRep, self).__init__() self.model = model self.prune_idx = prune_idx def forward(self, x): # Forward pass through the pruned model for i, m in enumerate(self.model): x = m(x) if i == self.prune_idx: break return x def resrep_prune(self, threshold): # Prune the model based on the threshold pruned_idx = [] for i, m in enumerate(self.model): if isinstance(m, Bottleneck): if m.bn3.weight is not None: mask = m.bn3.weight.data.abs().ge(threshold).float().cuda() m.bn3.weight.data.mul_(mask) m.bn3.bias.data.mul_(mask) m.conv3.weight.data.mul_(mask.view(-1, 1, 1, 1)) pruned_idx.append(i) elif isinstance(m, Conv): if m.bn.weight is not None: mask = m.bn.weight.data.abs().ge(threshold).float().cuda() m.bn.weight.data.mul_(mask) m.bn.bias.data.mul_(mask) m.conv.weight.data.mul_(mask.view(-1, 1, 1, 1)) pruned_idx.append(i) self.prune_idx = max(pruned_idx) class YOLOLayer(nn.Module): def __init__(self, anchors, nc, img_size, yolo_idx): super(YOLOLayer, self).__init__() self.anchors = torch.Tensor(anchors) self.na = self.anchors.shape[0] # number of anchors self.nc = nc # number of classes self.no = self.nc + 5 # number of outputs per anchor self.img_size = img_size self.grid_size = 0 # grid size self.stride = 0 # stride self.grid = self.create_grid(img_size) self.scaled_anchors = torch.Tensor([(a_w / self.stride, a_h / self.stride) for a_w, a_h in self.anchors]) self.anchor_w = self.scaled_anchors[:, 0:1].view((1, self.na, 1, 1)) self.anchor_h = self.scaled_anchors[:, 1:2].view((1, self.na, 1, 1)) self.yolo_idx = yolo_idx def forward(self, x): # Residual block x = self.residual(x, 1) # Feature extraction x = self.extract(x, 2) # Pruning x = self.prune(x, 3) # Detection x = self.detect(x, 4) return x def residual(self, x, n): for i in range(n): x = self.m[i](x) + x return x def extract(self, x, n): for i in range(n): x = self.m[i](x) return x def prune(self, x, n): self.resrep.resrep_prune(threshold=0.1) x = self.resrep(x) return x def detect(self, x, n): # Predict on center io = x.clone()[:, :, self.grid_size[1] // 2:self.grid_size[1] // 2 + 1, self.grid_size[0] // 2:self.grid_size[0] // 2 + 1] io[..., 4] += self.grid_x io[..., 5] += self.grid_y io[..., :2] = self.sigmoid(io[..., :2]) * 2. - 0.5 + self.grid.to(x.device) io[..., 2:4] = (self.sigmoid(io[..., 2:4]) * 2) ** 2 * self.anchor_wh[self.anchor_vec == self.yolo_idx] io[..., :4] *= self.stride return io.view(io.shape[0], -1, self.no), x class Model(nn.Module): def __init__(self, cfg='models/yolov5s.yaml', ch=3, nc=None): super(Model, self).__init__() self.model, self.save = parse_model(deepcopy(yaml.load(open(cfg, 'r')))) self.stride = torch.tensor([32, 16, 8]) self.ch = ch self.nc = nc self.hyper_params = self.model.pop('hyper_params') self.init_weights() def forward(self, x): y, dt = [], [] for i, m in enumerate(self.model): x = m(x) if i in [2, 4, 6]: y.append(x) dt.append(None) return y, dt def init_weights(self): # Initialize weights for m in self.modules(): t = type(m) if t is Conv: pass # nn.init.kaiming_normal_(m.conv.weight, mode='fan_out', nonlinearity='relu') elif t is DWConv: pass # nn.init.kaiming_normal_(m.conv.weight, mode='fan_out', nonlinearity='relu') m.bn.weight.data.fill_(1.0) m.bn.bias.data.fill_(0) elif t is nn.BatchNorm2d: m.eps = 1e-3 m.momentum = 0.03 def prune(self, threshold): # Apply ResRep pruning to the model pruned_idx = [] for i, m in enumerate(self.model): if isinstance(m, Bottleneck): if m.bn3.weight is not None: mask = m.bn3.weight.data.abs().ge(threshold).float().cuda() m.bn3.weight.data.mul_(mask) m.bn3.bias.data.mul_(mask) m.conv3.weight.data.mul_(mask.view(-1, 1, 1, 1)) pruned_idx.append(i) elif isinstance(m, Conv): if m.bn.weight is not None: mask = m.bn.weight.data.abs().ge(threshold).float().cuda() m.bn.weight.data.mul_(mask) m.bn.bias.data.mul_(mask) m.conv.weight.data.mul_(mask.view(-1, 1, 1, 1)) pruned_idx.append(i) elif isinstance(m, YOLOLayer): m.resrep = ResRep(m.m, self.prune_idx) m.resrep.resrep_prune(threshold=0.1) pruned_idx.append(i) self.prune_idx = max(pruned_idx) def fuse(self): # Fuse Conv+BN and Conv+ReLU into Conv print('Fusing layers...') for m in self.modules(): if type(m) is Conv and type(m.bn) is nn.BatchNorm2d: m.conv = fuse_conv_bn(m.conv, m.bn) delattr(m, 'bn') elif type(m) is nn.Sequential: for i, v in enumerate(m): if type(v) is Conv and type(v.bn) is nn.BatchNorm2d: v.conv = fuse_conv_bn(v.conv, v.bn) delattr(v, 'bn') elif type(v) is Conv and hasattr(m[i + 1], 'act'): v.conv = fuse_conv_relu(v.conv, m[i + 1].act) delattr(m[i + 1], 'act') elif type(v) is nn.BatchNorm2d and hasattr(m[i + 1], 'act'): delattr(m[i + 1], 'act') elif type(m) is nn.BatchNorm2d: if not hasattr(m, 'act'): m.act = nn.ReLU(inplace=True) def info(self, verbose=False): # Print model information model_info(self, verbose) def parse_model(d, ch=3, nc=None): # model_dict, input_channels, num_classes anchors, nc = d['anchors'], d['nc'] na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors layers, save, c2 = [], [], ch for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): m = eval(m) if isinstance(m, str) else m # eval strings for j, a in enumerate(args): try: args[j] = eval(a) if isinstance(a, str) else a # eval strings except: pass n = '' if n == 1 else n if m in [Conv, DWConv, Focus, Bottleneck, SPP, Concat, Detect]: c1, c2 = c2, args[0] if isinstance(c2, list): c2 = [ch] + c2 elif c2 == 'same': c2 = c1 elif c2 == -1: c2 = [256, 512, 1024, 2048][max(2 + i - len(d['backbone']), 0)] elif c2 == -2: c2 = c1 // 2 elif c2 == -3: c2 = c1 // 3 elif c2 == -4: c2 = c1 // 4 else: c2 = int(c2) args = [c1, c2, *args[1:]] if m in [Bottleneck, SPP]: args.insert(2, n) n = '' elif m is nn.BatchNorm2d: args = [c2] elif m is nn.Upsample: if isinstance(args[0], str): args = [f'{c2 * int(args[0])}'] else: args *= 2 elif m is nn.Linear: args = [nc, args[0]] if n == 'head': args[0] = args[0] * na * (nc + 5) n = '' elif m is Detect: args.append([anchors[i] for i in d['anchor_idx'][f]]) args.append(nc) args.append(f) else: print(f'Warning: Unrecognized layer string: {m}') if isinstance(c2, list): c2 = c2[-1] module = nn.Sequential(*[m(*args) if m is not Detect else Detect(*args[:3]).to(f'cuda:{args[3]}') for m in [m]]) module.nc = nc # attach number of classes to Detect() module.stride = torch.tensor([2 ** i for i in range(10)])[[f, f - 1, f - 2]] # strides computed during construction module.anchor_vec = d['anchor_idx'][f] module.training = False layers.append(module) if n: save.append(n) return nn.Sequential(*layers), sorted(save) def fuse_conv_bn(conv, bn): # https://tehnokv.com/posts/fusing-batchnorm-and-conv/ with torch.no_grad(): # init fusedconv = Conv( conv.in_channels, conv.out_channels, kernel_size=conv.kernel_size, stride=conv.stride, padding=conv.padding, groups=conv.groups, bias=True, dilation=conv.dilation) fusedconv.weight.data = conv.weight.data.clone().reshape( fusedconv.weight.data.shape) # copy conv weights # prepare filters bnmean = bn.running_mean bnstd = torch.sqrt(bn.running_var + bn.eps) if conv.groups > 1: # reshape (out_c, in_c // groups, kH, kW) -> (out_c * groups, in_c // groups, kH, kW) conv_weight_groups = conv.weight.data.reshape( conv.out_channels * conv.groups, -1, conv.kernel_size[0], conv.kernel_size[1]) # reshape bn params (out_c) -> (out_c * groups) bnmean = bnmean.repeat(conv.groups) bnstd = bnstd.repeat(conv.groups) else: conv_weight_groups = conv.weight.data # fuse fusedconv.bias.data = bn.bias.data + (bn.weight.data / bnstd) * (conv.bias.data - bnmean) scale = (bn.weight.data / bnstd) fusedconv.weight.data *= scale.reshape(-1, 1, 1, 1) return fusedconv def fuse_conv_relu(conv, relu): # Fuse Conv+ReLU into Conv with torch.no_grad(): # init fusedconv = Conv( conv.in_channels, conv.out_channels, kernel_size=conv.kernel_size, stride=conv.stride, padding=conv.padding, groups=conv.groups, bias=True, dilation=conv.dilation) fusedconv.weight.data = conv.weight.data.clone().reshape( fusedconv.weight.data.shape) # copy conv weights # fuse fusedconv.bias.data = conv.bias.data fusedconv.weight.data *= relu.inplace_slope.reshape(-1, 1, 1, 1) return fusedconv ``` 6. 在 `train.py` 文件中,添加 ResRep 剪枝方法的调用。 ``` # ResRep pruning if epoch == 100: model.prune(threshold=0.1) print(f'Pruned model to {count_parameters(model)[0] / 1e6:.3g}M parameters') ``` 7. 运行训练命令,开始训练。 ``` python train.py --img 640 --batch 16 --epochs 300 --data coco.yaml --cfg models/yolov5s.yaml --weights '' --name yolov5s_resrep ``` 完成以上步骤后,即可得到应用了 ResRep 剪枝方法的 YOLOv5 6.1 版本的模型,并进行训练。

相关推荐

最新推荐

recommend-type

8_Android app作业-源码.zip

提供的源码资源涵盖了安卓应用、小程序、Python应用和Java应用等多个领域,每个领域都包含了丰富的实例和项目。这些源码都是基于各自平台的最新技术和标准编写,确保了在对应环境下能够无缝运行。同时,源码中配备了详细的注释和文档,帮助用户快速理解代码结构和实现逻辑。 适用人群: 这些源码资源特别适合大学生群体。无论你是计算机相关专业的学生,还是对其他领域编程感兴趣的学生,这些资源都能为你提供宝贵的学习和实践机会。通过学习和运行这些源码,你可以掌握各平台开发的基础知识,提升编程能力和项目实战经验。 使用场景及目标: 在学习阶段,你可以利用这些源码资源进行课程实践、课外项目或毕业设计。通过分析和运行源码,你将深入了解各平台开发的技术细节和最佳实践,逐步培养起自己的项目开发和问题解决能力。此外,在求职或创业过程中,具备跨平台开发能力的大学生将更具竞争力。 其他说明: 为了确保源码资源的可运行性和易用性,特别注意了以下几点:首先,每份源码都提供了详细的运行环境和依赖说明,确保用户能够轻松搭建起开发环境;其次,源码中的注释和文档都非常完善,方便用户快速上手和理解代码;最后,我会定期更新这些源码资源,以适应各平台技术的最新发展和市场需求。
recommend-type

低值易耗品管理制度.docx

低值易耗品管理制度.docx
recommend-type

2024年韭菜主要病虫害绿色防控技术方案.docx

2024年韭菜主要病虫害绿色防控技术方案.docx
recommend-type

基于ssm的公司人力资源管理系统设计与实现源码.zip

提供的源码资源涵盖了安卓应用、小程序、Python应用和Java应用等多个领域,每个领域都包含了丰富的实例和项目。这些源码都是基于各自平台的最新技术和标准编写,确保了在对应环境下能够无缝运行。同时,源码中配备了详细的注释和文档,帮助用户快速理解代码结构和实现逻辑。 适用人群: 这些源码资源特别适合大学生群体。无论你是计算机相关专业的学生,还是对其他领域编程感兴趣的学生,这些资源都能为你提供宝贵的学习和实践机会。通过学习和运行这些源码,你可以掌握各平台开发的基础知识,提升编程能力和项目实战经验。 使用场景及目标: 在学习阶段,你可以利用这些源码资源进行课程实践、课外项目或毕业设计。通过分析和运行源码,你将深入了解各平台开发的技术细节和最佳实践,逐步培养起自己的项目开发和问题解决能力。此外,在求职或创业过程中,具备跨平台开发能力的大学生将更具竞争力。 其他说明: 为了确保源码资源的可运行性和易用性,特别注意了以下几点:首先,每份源码都提供了详细的运行环境和依赖说明,确保用户能够轻松搭建起开发环境;其次,源码中的注释和文档都非常完善,方便用户快速上手和理解代码;最后,我会定期更新这些源码资源,以适应各平台技术的最新发展和市场需求。
recommend-type

1.2.py

1.2.py
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

从键盘输入一段英文字符串,其中包含多个字母‘h',请编写程序利用正则表达式,将英文字符串中的’h'全部改为‘H’

好的,我可以帮您解决这个问题。 您可以使用 Python 编写一个程序来实现这个功能。具体步骤如下: 1. 首先导入 re 模块,这个模块是 Python 中用于处理正则表达式的模块。 2. 然后定义一个包含英文字符串的变量,例如: text = "This is a string containing multiple h's." 3. 接下来,使用 re.sub() 方法来进行替换操作。re.sub() 方法的第一个参数是正则表达式,第二个参数是替换的字符或字符串,第三个参数是被替换的字符串。在这个例子里,我们需要将所有的小写字母 h 替换成大写字母 H,所以正则表达式可以写成
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。