这个 label_map = {'positive': 1,'negative': -1,'uncertainty': 0} labels是1,-1,和0,但是总给我报错KeyError: 1 怎么回事
时间: 2024-04-13 22:29:02 浏览: 95
根据你提供的 `label_map` 字典的定义,它将 'positive' 映射到 1,'negative' 映射到 -1,'uncertainty' 映射到 0。
然而,根据你描述的错误信息 `KeyError: 1`,看起来发生了一个键错误。这意味着在尝试使用 `label_map` 字典的时候,没有找到键为 1 的映射。
根据你之前提到的 `labels` 是一个包含 1、-1 和 0 的列表,代码应该是这样的:
```python
label_map = {'positive': 1, 'negative': -1, 'uncertainty': 0}
labels = [1, -1, 0]
mapped_labels = [label_map[label] for label in labels]
```
请确保 `labels` 列表中的元素与 `label_map` 字典中的键一致,以正确进行映射。如果仍然遇到问题,请检查一下输入数据是否正确。
相关问题
解释一段python代码 class KalmanFilter(object): def init(self, dim_x, dim_z, dim_u=0): if dim_x < 1: raise ValueError('dim_x must be 1 or greater') if dim_z < 1: raise ValueError('dim_z must be 1 or greater') if dim_u < 0: raise ValueError('dim_u must be 0 or greater') self.dim_x = dim_x self.dim_z = dim_z self.dim_u = dim_u self.x = zeros((dim_x, 1)) # state self.P = eye(dim_x) # uncertainty covariance self.Q = eye(dim_x) # process uncertainty self.B = None # control transition matrix self.F = eye(dim_x) # state transition matrix self.H = zeros((dim_z, dim_x)) # Measurement function self.R = eye(dim_z) # state uncertainty self._alpha_sq = 1. # fading memory control self.M = np.zeros((dim_z, dim_z)) # process-measurement cross correlation self.z = np.array([[None]*self.dim_z]).T # gain and residual are computed during the innovation step. We # save them so that in case you want to inspect them for various # purposes self.K = np.zeros((dim_x, dim_z)) # kalman gain self.y = zeros((dim_z, 1)) self.S = np.zeros((dim_z, dim_z)) # system uncertainty self.SI = np.zeros((dim_z, dim_z)) # inverse system uncertainty # identity matrix. Do not alter this. self._I = np.eye(dim_x) # these will always be a copy of x,P after predict() is called self.x_prior = self.x.copy() self.P_prior = self.P.copy() # these will always be a copy of x,P after update() is called self.x_post = self.x.copy() self.P_post = self.P.copy() # Only computed only if requested via property self._log_likelihood = log(sys.float_info.min) self._likelihood = sys.float_info.min self._mahalanobis = None self.inv = np.linalg.inv
这段Python代码是KalmanFilter类的初始化方法。在这个方法中,首先会检查dim_x、dim_z和dim_u是否符合要求,如果不符合就会抛出ValueError异常。然后会根据参数的值初始化KalmanFilter对象的各个属性,包括状态量的维度dim_x、观测量的维度dim_z、控制量的维度dim_u。初始化时,状态量x被初始化为一个dim_x行1列的零向量,不确定性协方差P被初始化为dim_x阶单位矩阵,过程不确定性Q也被初始化为dim_x阶单位矩阵。控制转移矩阵B、状态转移矩阵F、测量函数H、状态不确定性R、过程-测量交叉相关M、增长记忆控制参数_alpha_sq、测量残差z、卡尔曼增益K、残差y、系统不确定性S和其逆矩阵SI等都被初始化为相应的大小的零矩阵或数组。这个类还包含一个求逆矩阵的方法inv。
model_list <- prophet(WHO_data_list, growth = "logistic", changepoints = None, n_changepoints = 25, changepoint_range = 0.8, yearly_seasonality = T, weekly_seasonality = F, daily_seasonality = F, holidays= None, seasonality_mode = 'multiplicative', seasonality_prior_scale = 10.0, holidays_prior_scale = 10.0, changepoint_prior_scale = 0.05, mcmc_samples = 0, interval_width = 0.95, uncertainty_samples = 1000, stan_backend = None)
这是一个使用 Prophet 模型对 WHO_data_list 进行时间序列预测的代码。在该模型中,使用了逻辑增长模型(growth = "logistic"),没有设置特殊的变化点(changepoints = None),设置了25个变化点(n_changepoints = 25),变化点范围为80%(changepoint_range = 0.8),启用了年度季节性(yearly_seasonality = T),未启用周季节性和日季节性(weekly_seasonality = F, daily_seasonality = F),没有添加节假日信息(holidays= None),季节性模式为乘法模式(seasonality_mode = 'multiplicative'),季节性先验比例为10.0(seasonality_prior_scale = 10.0),节假日先验比例为10.0(holidays_prior_scale = 10.0),变化点先验比例为0.05(changepoint_prior_scale = 0.05),采样次数为0(mcmc_samples = 0),置信区间为95%(interval_width = 0.95),不确定性采样次数为1000(uncertainty_samples = 1000),后端使用默认值(stan_backend = None)。
阅读全文