基于OpenCV的人脸识别(Python完整代码)

时间: 2023-08-27 11:54:41 浏览: 43
当然可以!以下是一个基于OpenCV的人脸识别的Python完整代码示例: ```python import cv2 # 加载人脸识别器 face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') # 打开摄像头 cap = cv2.VideoCapture(0) while True: # 读取摄像头画面 ret, frame = cap.read() # 将画面转为灰度图像 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # 检测人脸 faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30)) # 在检测到的人脸周围画框 for (x, y, w, h) in faces: cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 3) # 显示结果 cv2.imshow('Face detection', frame) # 按下 'q' 键退出程序 if cv2.waitKey(1) & 0xFF == ord('q'): break # 释放摄像头和窗口 cap.release() cv2.destroyAllWindows() ``` 在这个示例中,我们使用了OpenCV自带的人脸级联分类器(haarcascade_frontalface_default.xml)来进行人脸检测。首先,我们加载分类器并打开摄像头,然后不断读取摄像头画面,将其转为灰度图像,并使用人脸级联分类器检测人脸。最后,在检测到的人脸周围画框,并通过窗口显示结果。按下 'q' 键即可退出程序。 请注意,你需要将 `haarcascade_frontalface_default.xml` 文件放在与代码相同的目录下,或者指定正确的文件路径。 希望这个代码示例对你有帮助!如有其他问题,请随时提问。

相关推荐

以下是一段基于OpenCV的人脸识别的Python代码: python import cv2 import numpy as np # 加载已经训练好的人脸识别模型 recognizer = cv2.face.LBPHFaceRecognizer_create() recognizer.read('ykc.yml') # 加载人脸检测模型 face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_alt2.xml') def predict_faces(image_path): # 读取图像并转为灰度图像 image = cv2.imread(image_path) gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # 检测人脸 faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30)) # 对检测到的每张人脸进行预测 for (x, y, w, h) in faces: # 根据检测到的人脸区域提取出人脸 face_roi = gray\[y:y + h, x:x + w\] # 进行人脸识别 label, confidence = recognizer.predict(face_roi) # 在图像上绘制人脸区域和识别结果 cv2.rectangle(image, (x, y), (x + w, y + h), (0, 255, 0), 2) cv2.putText(image, f'Label: {label}', (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2) # 显示结果图像 cv2.imshow('Face Recognition', image) cv2.waitKey(0) cv2.destroyAllWindows() # 调用函数进行人脸识别 image_path = 'test.jpg' predict_faces(image_path) 这段代码首先加载已经训练好的人脸识别模型,并使用人脸检测模型对输入图像进行人脸检测。然后,对每一个检测到的人脸区域进行预测,并在图像上标注出人脸区域和识别结果。最后,显示结果图像。 请确保在运行代码之前,已经安装了OpenCV库,并将人脸检测模型(haarcascade_frontalface_alt2.xml)和训练好的人脸识别模型(ykc.yml)放置在相应的路径下。 #### 引用[.reference_title] - *1* [基于OpenCv的人脸识别(Python完整代码)](https://blog.csdn.net/weixin_46291251/article/details/117996591?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522168943661616800225519912%2522%252C%2522scm%2522%253A%252220140713.130102334.pc%255Fall.%2522%257D&request_id=168943661616800225519912&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~all~first_rank_ecpm_v1~rank_v31_ecpm-1-117996591-null-null.article_score_rank&utm_term=%E5%9F%BA%E4%BA%8Eopencv%E7%9A%84%E4%BA%BA%E8%84%B8%E8%AF%86%E5%88%AB%20python%20%E4%BB%A3%E7%A0%81)[target="_blank"] [.reference_item] - *2* [基于OpenCV-Python实现的人脸识别](https://blog.csdn.net/weixin_52978638/article/details/124287279?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522168943661616800225519912%2522%252C%2522scm%2522%253A%252220140713.130102334.pc%255Fall.%2522%257D&request_id=168943661616800225519912&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~all~first_rank_ecpm_v1~rank_v31_ecpm-15-124287279-null-null.article_score_rank&utm_term=%E5%9F%BA%E4%BA%8Eopencv%E7%9A%84%E4%BA%BA%E8%84%B8%E8%AF%86%E5%88%AB%20python%20%E4%BB%A3%E7%A0%81)[target="_blank"] [.reference_item] - *3* [opencv人脸识别(python)](https://blog.csdn.net/qq_52358027/article/details/126795333?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522168943661616800225519912%2522%252C%2522scm%2522%253A%252220140713.130102334.pc%255Fall.%2522%257D&request_id=168943661616800225519912&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~all~first_rank_ecpm_v1~rank_v31_ecpm-12-126795333-null-null.article_score_rank&utm_term=%E5%9F%BA%E4%BA%8Eopencv%E7%9A%84%E4%BA%BA%E8%84%B8%E8%AF%86%E5%88%AB%20python%20%E4%BB%A3%E7%A0%81)[target="_blank"] [.reference_item] [ .reference_list ]
以下是一个完整的基于OpenCV的人脸识别Python代码示例: python import os import cv2 import numpy as np import pickle # 设置训练数据集路径 BASE_DIR = os.path.dirname(os.path.abspath(__file__)) image_dir = os.path.join(BASE_DIR, "images") # 加载Haar级联分类器 faceCascade = cv2.CascadeClassifier("haarcascade_frontalface_default.xml") # 初始化面部标签和训练数据集 current_id = 0 label_ids = {} y_labels = [] x_train = [] # 遍历训练数据集中的每个人脸图像 for root, dirs, files in os.walk(image_dir): for file in files: if file.endswith("png") or file.endswith("jpg"): path = os.path.join(root, file) label = os.path.basename(root).replace(" ", "-").lower() # 如果标签不存在,则创建新标签 if not label in label_ids: label_ids[label] = current_id current_id += 1 id_ = label_ids[label] # 加载图像并将其转换为灰度图像 pil_image = cv2.imread(path) gray = cv2.cvtColor(pil_image, cv2.COLOR_BGR2GRAY) # 使用Haar级联分类器检测人脸 faces = faceCascade.detectMultiScale(gray, scaleFactor=1.5, minNeighbors=5) # 对每个检测到的人脸进行标记并将其添加到训练数据集中 for (x, y, w, h) in faces: roi_gray = gray[y:y+h, x:x+w] x_train.append(roi_gray) y_labels.append(id_) # 使用局部二值模式(LBP)算法对训练数据集进行特征提取和训练 recognizer = cv2.face.LBPHFaceRecognizer_create() recognizer.train(x_train, np.array(y_labels)) # 将标签映射到标签ID labels = {v:k for k,v in label_ids.items()} # 将标签保存到文件 with open("labels.pickle", 'wb') as f: pickle.dump(label_ids, f) # 将训练数据集保存到文件 recognizer.save("trainer.yml") # 打开摄像头并进行实时人脸识别 cap = cv2.VideoCapture(0) while True: # 读取视频帧 ret, frame = cap.read() # 转换为灰度图像 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # 使用Haar级联分类器检测人脸 faces = faceCascade.detectMultiScale(gray, scaleFactor=1.5, minNeighbors=5) # 对每个检测到的人脸进行识别 for (x, y, w, h) in faces: roi_gray = gray[y:y+h, x:x+w] id_, confidence = recognizer.predict(roi_gray) if confidence >= 45 and confidence <= 85: font = cv2.FONT_HERSHEY_SIMPLEX name = labels[id_] cv2.putText(frame, name, (x,y), font, 1, (255,255,255), 2, cv2.LINE_AA) # 画出人脸检测框 color = (255, 0, 0) stroke = 2 end_cord_x = x + w end_cord_y = y + h cv2.rectangle(frame, (x, y), (end_cord_x, end_cord_y), color, stroke) # 显示视频帧 cv2.imshow('frame',frame) if cv2.waitKey(20) & 0xFF == ord('q'): break # 释放摄像头资源 cap.release() cv2.destroyAllWindows() 这个代码示例中,我们首先遍历训练数据集中的所有图像,并使用Haar级联分类器检测人脸。然后,我们使用局部二值模式(LBP)算法对训练数据集进行特征提取和训练,并将标签和训练数据集保存到文件。最后,我们打开摄像头进行实时人脸识别。如果置信度(confidence)在45到85之间,就将人脸识别结果绘制在视频帧上。
要使用OpenCV进行人脸识别,你可以按照以下步骤来实现: 首先,在项目文件夹下创建一个脚本文件。 然后,导入OpenCV库并指定待检测的图片和人脸识别模型的路径。你可以使用以下代码进行预准备操作: import cv2 filename = 'OIP-C.jpg' pathface = 'B:\\Python\\Practic\\Face recognition\\cascades\\haarcascade_frontalface_default.xml' 接下来,定义一个函数来进行人脸检测。在这个函数中,你需要加载人脸识别模型并读取待检测的图片。然后,将图片转换为灰度图像,使用人脸识别模型对其进行检测,并将检测到的人脸位置标注在图像上。最后,显示标注后的图像,并保存结果图像。 def detect(filename): face_cascade = cv2.CascadeClassifier(pathface) img = cv2.imread(filename) gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) faces = face_cascade.detectMultiScale(gray, 1.3, 5) for (x, y, w, h) in faces: img = cv2.rectangle(img, (x, y), (x+w, y+h), (255,0,0), 2) cv2.namedWindow('Face recognition') cv2.imshow('Face recognition', img) cv2.imwrite('./Try.jpg', img) cv2.waitKey(0) 最后,调用detect函数并传入待检测的图片文件名即可进行人脸识别。 detect(filename) 以上就是使用OpenCV进行人脸识别的Python代码。请确保你已正确安装了OpenCV库,并将人脸识别模型文件(haarcascade_frontalface_default.xml)放置在正确的路径下。123 #### 引用[.reference_title] - *1* *2* *3* [基于OpenCV-Python实现的人脸识别](https://blog.csdn.net/weixin_52978638/article/details/124287279)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
### 回答1: 基于OpenCV的人脸识别Python是一种使用Python编程语言和OpenCV计算机视觉库实现的人脸识别技术。它可以通过摄像头或图像文件识别人脸,并对其进行分析和处理。该技术可以应用于安全监控、人脸识别登录、人脸情绪分析等领域。 ### 回答2: OpenCV是一个开源的计算机视觉库,支持多种编程语言,如Python、C ++等。它具有许多强大的功能,如图像处理、人脸识别和对象识别等,因此也被广泛地应用在各种计算机视觉应用中。 人脸识别是其中一个非常流行的应用场景,它可以用于各种领域,如安防、人脸支付、自动驾驶等。基于OpenCV的Python人脸识别也是很常见的应用之一。 人脸识别的实现主要分为两个步骤:人脸检测和人脸识别。在OpenCV中,人脸检测可以通过使用Haar级联分类器来实现。这个分类器是由一系列的Haar特征组成,用于检测人脸的位置和大小。Haar特征是一些简单的模式,可以用于检测图像中的边缘、线和角等。通过训练这个分类器,可以得到一个可以用于检测人脸的模型。 在使用OpenCV进行人脸识别的过程中,需要先加载训练好的人脸检测模型。可以使用cv2.CascadeClassifier()函数来加载这个模型。然后,通过调用detectMultiScale()函数来检测图像中的人脸位置。这个函数会返回一个矩形区域,表示检测到的人脸所在的位置和大小。 接下来,就可以进行人脸识别了。这个过程需要先训练一个识别器。在OpenCV中,可以使用LBPH算法或者Eigenfaces算法来实现。这个算法将人脸图像转换为一些数字特征,并提取这些特征作为识别器的输入。然后,通过比对输入的人脸特征和已经训练好的模型,可以实现对人脸的识别。 在实际应用中,人脸识别还需要考虑到一些其他因素,如图像质量、角度、光照等。因此,在设计人脸识别系统时,需要综合考虑这些因素,并进行不断地优化和改进。 总之,基于OpenCV的人脸识别Python是一种非常有用和广泛应用的技术,可以用于各种场景下的安防和人脸识别应用。它的实现过程需要了解一定的图像处理和机器学习算法,但基于OpenCV库的强大功能和丰富的文档,使得它变得比较容易上手和应用。 ### 回答3: Opencv是一种跨平台的计算机视觉库,由英特尔公司开发而成,具有强大的图像处理能力。Python作为一种简单易学、优雅高效的编程语言,能够让开发者轻松地实现各种计算机视觉方面的应用,比如按照特定规则对图像进行分割、在图像中寻找特定形状等。基于Opencv的人脸识别系统,是利用计算机视觉技术,将摄像头拍摄到的人脸图像和事先录入的人脸信息进行比对,从而实现对人脸的识别。具体步骤如下: 1.首先,需要搜集一定量的人脸图像进行训练,形成人脸数据库。 2.利用Opencv库中的函数,对训练数据进行图像处理,提取出图像中的人脸信息。主要是利用人脸识别中常用的Haar特征检测算法,对图像中的人脸进行预处理和检测。 3.将人脸信息进行分类和特征提取,形成一个模式库。常用的人脸特征点提取算法有LBP和PCA等。 4.当系统需要识别某一个人脸时,可以先通过摄像头拍摄到人脸图像进行处理。处理方法主要包括预处理、人脸检测、人脸特征提取和匹配等。 5.基于之前形成的模式库,对当前输入的图像进行比对,从而得出人脸识别结果。 通过上述步骤,基于Opencv的人脸识别系统可以较为准确地实现人脸识别。在实际应用中,还需要考虑到误差率、处理速度等因素,以达到更加稳定和快速的人脸识别效果。
以下是基于OpenCV的人脸识别的Python代码示例: python import cv2 # 加载Haar级联分类器 faceCascade = cv2.CascadeClassifier("haarcascade_frontalface_default.xml") # 加载训练数据集 recognizer = cv2.face.LBPHFaceRecognizer_create() recognizer.read("trainer.yml") # 加载标签 labels = {"person_name": 1} with open("labels.pickle", 'rb') as f: labels = pickle.load(f) labels = {v:k for k,v in labels.items()} # 打开摄像头 cap = cv2.VideoCapture(0) while True: # 读取视频帧 ret, frame = cap.read() # 转换为灰度图像 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # 检测人脸 faces = faceCascade.detectMultiScale(gray, scaleFactor=1.5, minNeighbors=5) # 对每个检测到的人脸进行识别 for (x, y, w, h) in faces: roi_gray = gray[y:y+h, x:x+w] id_, confidence = recognizer.predict(roi_gray) if confidence >= 45 and confidence <= 85: font = cv2.FONT_HERSHEY_SIMPLEX name = labels[id_] cv2.putText(frame, name, (x,y), font, 1, (255,255,255), 2, cv2.LINE_AA) # 画出人脸检测框 color = (255, 0, 0) stroke = 2 end_cord_x = x + w end_cord_y = y + h cv2.rectangle(frame, (x, y), (end_cord_x, end_cord_y), color, stroke) # 显示视频帧 cv2.imshow('frame',frame) if cv2.waitKey(20) & 0xFF == ord('q'): break # 释放摄像头资源 cap.release() cv2.destroyAllWindows() 这个代码示例中,我们首先加载了Haar级联分类器和训练数据集,然后打开摄像头,并对每个检测到的人脸进行识别。如果置信度(confidence)在45到85之间,就将人脸识别结果绘制在视频帧上。最后,我们通过cv2.imshow()函数显示视频帧,并使用cv2.waitKey()函数等待用户按下“q”键退出循环。
### 回答1: 以下是一个简单的 OpenCV 人脸识别代码示例: import cv2 # 加载人脸检测器 face_cascade = cv2.CascadeClassifier("haarcascade_frontalface_default.xml") # 读取图像 img = cv2.imread("image.jpg") gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 检测人脸 faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5) # 在图像中标记人脸 for (x, y, w, h) in faces: cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 2) # 显示图像 cv2.imshow("Faces found", img) cv2.waitKey(0) cv2.destroyAllWindows() 该代码将使用 OpenCV 的 Haar 特征分类器来检测图像中的人脸,并在图像上标记出这些人脸。 ### 回答2: OpenCV是一个用于计算机视觉和机器学习任务的开源计算机视觉库。OpenCV的人脸识别代码Python实现了一个完整的人脸识别流程,包括人脸检测、特征提取和人脸识别。下面我将详细介绍这个代码的实现和使用方法。 首先,我们需要导入必要的库: import cv2 import os import numpy as np from PIL import Image 其中,cv2用于图像处理,os用于路径操作,numpy用于数组处理,PIL用于图像读取。接下来我们需要定义一个函数来读取人脸数据: def get_images_and_labels(path): image_paths = [os.path.join(path, f) for f in os.listdir(path)] faces = [] ids = [] for image_path in image_paths: image = Image.open(image_path).convert('L') np_image = np.array(image, 'uint8') id = int(os.path.split(image_path)[-1].split(".")[1]) faces.append(np_image) ids.append(id) return faces, ids 这个函数的作用是读取path路径下的所有图像,并将每个图像的灰度化矩阵放入一个faces数组中,同时记录每个图像对应的id值。 接下来我们需要训练模型: def train_model(faces, ids): recognizer = cv2.face.LBPHFaceRecognizer_create() recognizer.train(faces, np.array(ids)) return recognizer 这个函数定义了一个基于LBPH算法的人脸识别器,并用faces和ids训练了这个识别器。 接下来我们需要实现人脸识别过程: def predict(test_img_path, recognizer): img = cv2.imread(test_img_path, cv2.IMREAD_GRAYSCALE) face_cascade = cv2.CascadeClassifier('/usr/local/share/OpenCV/haarcascades/haarcascade_frontalface_alt.xml') face = face_cascade.detectMultiScale(img, scaleFactor=1.2, minNeighbors=3) if len(face) == 0: return None else: for (x,y,w,h) in face: id, confidence = recognizer.predict(img[y:y+h, x:x+w]) return id 这个函数的作用是输入一张图像的路径,进行人脸检测并使用之前训练好的识别器进行识别。如果检测不到人脸,则返回None;否则返回识别出来的id值。 最后,我们可以通过以下方式来实现人脸识别: faces, ids = get_images_and_labels('./faces') recognizer = train_model(faces, ids) id = predict('./test.jpg', recognizer) 这个代码对应的数据集在faces文件夹下,输入一张测试图像test.jpg进行识别,并返回它对应的id值。 总的来说,OpenCV的人脸识别代码Python实现了一个完整的人脸识别流程,并且能够在较短的时间内完成人脸识别任务。但是需要注意的是,由于人脸识别的精度与数据的质量、数据的多寡、算法的选择等因素有关,因此需要在实际应用中进行实验和改进,以提高人脸识别效果。 ### 回答3: OpenCV是计算机视觉领域的一个重要工具库,其中包含了各种用于图像处理和分析的函数和工具。其中一个重要的应用就是人脸识别。本文将介绍如何使用Python语言编写一个OpenCV的人脸识别代码。 首先,我们需要导入OpenCV的Python库。可以使用以下代码导入: import cv2 接下来,我们需要载入预训练的人脸分类器。这可以使用以下代码完成: face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') 这里使用的预训练分类器是OpenCV自带的一个模型,我们需要将其下载下来并保存到当前目录。载入分类器后,我们可以使用以下代码读取一张图像并识别其中的人脸: img = cv2.imread('image.jpg') gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) faces = face_cascade.detectMultiScale(gray, 1.3, 5) for (x,y,w,h) in faces: cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2) cv2.imshow('img',img) cv2.waitKey(0) cv2.destroyAllWindows() 这段代码会读取名为image.jpg的图像文件,并将其转化为灰度图像。然后使用detectMultiScale函数识别其中的人脸,函数会返回一个包含每个人脸位置和大小信息的列表,我们可以使用这些信息将人脸框出来。最后使用imshow函数将框好的图像显示出来,并等待用户输入任意键退出。 除了识别静态图像中的人脸,我们也可以使用OpenCV识别视频或摄像头中的实时人脸。以下是一个简单的示例代码: import cv2 face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') cap = cv2.VideoCapture(0) while True: ret, img = cap.read() gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) faces = face_cascade.detectMultiScale(gray, 1.3, 5) for (x,y,w,h) in faces: cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2) cv2.imshow('img',img) k = cv2.waitKey(30) & 0xff if k == 27: break cap.release() cv2.destroyAllWindows() 这段代码会打开计算机上的摄像头,并实时识别出其中的人脸。每一帧图像都会被读取并转换为灰度图像,然后调用detectMultiScale函数识别其中的人脸,并将其框出。最后使用imshow函数将带有矩形框的图像显示出来,并等待30毫秒,同时检测是否有用户按下Esc键,若有则退出程序。 以上代码仅为OpenCV人脸识别的一个简单示例,该库有更多的函数和工具可以用于各种图像处理和分析任务,有了这些工具和技术,我们可以创造出更多的自动化、智能化图像应用。
以下是一个基于Python和OpenCV的人脸识别代码,可以实现对人脸的性别和年龄识别: python import cv2 import math # 加载Haar特征分类器 face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') # 初始化人脸性别和年龄识别模型 gender_net = cv2.dnn.readNetFromCaffe('deploy_gender.prototxt', 'gender_net.caffemodel') age_net = cv2.dnn.readNetFromCaffe('deploy_age.prototxt', 'age_net.caffemodel') # 定义性别和年龄标签 gender_list = ['Male', 'Female'] age_list = ['(0-2)', '(4-6)', '(8-12)', '(15-20)', '(25-32)', '(38-43)', '(48-53)', '(60-100)'] # 初始化摄像头 cap = cv2.VideoCapture(0) while True: # 读取摄像头捕获的帧 ret, frame = cap.read() # 转换成灰度图像 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # 检测人脸 faces = face_cascade.detectMultiScale(gray, 1.3, 5) # 绘制人脸矩形框,并进行性别和年龄识别 for (x, y, w, h) in faces: # 绘制人脸矩形框 cv2.rectangle(frame, (x, y), (x + w, y + h), (255, 0, 0), 2) # 根据人脸大小调整图像大小 face = cv2.resize(gray[y:y + h, x:x + w], (227, 227)) # 进行性别识别 gender_blob = cv2.dnn.blobFromImage(face, 1.0, (227, 227), (78.4263377603, 87.7689143744, 114.895847746), swapRB=False) gender_net.setInput(gender_blob) gender_preds = gender_net.forward() gender = gender_list[gender_preds[0].argmax()] # 进行年龄识别 age_blob = cv2.dnn.blobFromImage(face, 1.0, (227, 227), (78.4263377603, 87.7689143744, 114.895847746), swapRB=False) age_net.setInput(age_blob) age_preds = age_net.forward() age = age_list[age_preds[0].argmax()] # 在人脸矩形框下方绘制性别和年龄信息 cv2.putText(frame, "Gender: " + gender, (x, y + h + 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1) cv2.putText(frame, "Age: " + age, (x, y + h + 40), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1) # 显示帧 cv2.imshow('frame', frame) # 按'q'键退出 if cv2.waitKey(1) & 0xFF == ord('q'): break # 释放摄像头并关闭所有窗口 cap.release() cv2.destroyAllWindows() 其中,deploy_gender.prototxt和gender_net.caffemodel是用于性别识别的深度学习模型文件;deploy_age.prototxt和age_net.caffemodel是用于年龄识别的深度学习模型文件。在代码中,我们使用cv2.dnn.readNetFromCaffe()函数读取模型文件,并使用cv2.dnn.blobFromImage()函数将人脸图像转换成网络所需的格式。最后,根据网络输出的预测结果,确定性别和年龄标签,并在图像上显示出来。
以下是一个基于OpenCV和Python的人脸识别的示例代码: python import cv2 import os # 指定人脸检测器 face_detector = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') # 加载训练好的人脸识别模型 face_recognizer = cv2.face.LBPHFaceRecognizer_create() face_recognizer.read('trainer.yml') # 指定摄像头编号,如果只有一个摄像头,可以不指定 camera_id = 0 # 打开摄像头 capture = cv2.VideoCapture(camera_id) # 设置摄像头分辨率 capture.set(cv2.CAP_PROP_FRAME_WIDTH, 640) capture.set(cv2.CAP_PROP_FRAME_HEIGHT, 480) # 设置字体 font = cv2.FONT_HERSHEY_SIMPLEX # 设置人名列表 names = ['unknown', 'person1', 'person2', 'person3'] while True: # 读取视频帧 ret, frame = capture.read() # 转换为灰度图像 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # 检测人脸 faces = face_detector.detectMultiScale(gray, scaleFactor=1.2, minNeighbors=5, minSize=(30, 30)) # 对每个检测到的人脸进行识别 for (x, y, w, h) in faces: # 绘制人脸矩形框 cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2) # 提取人脸图像 face_roi = gray[y:y+h, x:x+w] # 调整图像大小 face_roi = cv2.resize(face_roi, (200, 200)) # 预测人脸所属的类别 label, confidence = face_recognizer.predict(face_roi) # 绘制人名标签 name = names[label] cv2.putText(frame, name, (x, y-20), font, 1, (0, 255, 0), 2) # 显示视频帧 cv2.imshow('video', frame) # 按下 q 键退出程序 if cv2.waitKey(1) & 0xFF == ord('q'): break # 释放摄像头 capture.release() # 关闭所有窗口 cv2.destroyAllWindows() 需要注意的是,这个示例代码中使用的是LBPH算法进行人脸识别,如果需要改用其他算法,比如Eigenfaces或Fisherfaces,需要更改相应的代码。另外,需要确保训练好的人脸识别模型文件(trainer.yml)和人脸检测器文件(haarcascade_frontalface_default.xml)存在,并且与代码中的路径保持一致。
以下是一个基于Python和OpenCV的人脸性别年龄识别代码示例: python import cv2 # 加载人脸识别分类器 face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') # 加载性别识别模型 gender_net = cv2.dnn.readNetFromCaffe('deploy_gender.prototxt', 'gender_net.caffemodel') gender_list = ['Male', 'Female'] # 加载年龄识别模型 age_net = cv2.dnn.readNetFromCaffe('deploy_age.prototxt', 'age_net.caffemodel') age_list = ['(0-2)', '(4-6)', '(8-12)', '(15-20)', '(25-32)', '(38-43)', '(48-53)', '(60-100)'] # 读取图像 img = cv2.imread('test.jpg') # 将图像转换为灰度图像 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 检测人脸 faces = face_cascade.detectMultiScale(gray, 1.3, 5) # 遍历每个人脸 for (x,y,w,h) in faces: # 在图像中绘制矩形框显示人脸位置 cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2) # 获取人脸区域 face_roi = img[y:y+h, x:x+w] # 将人脸区域转换为blob blob = cv2.dnn.blobFromImage(face_roi, scalefactor=1.0, size=(227, 227), mean=(78.4263377603, 87.7689143744, 114.895847746), swapRB=False, crop=False) # 性别识别 gender_net.setInput(blob) gender_preds = gender_net.forward() gender = gender_list[gender_preds[0].argmax()] # 年龄识别 age_net.setInput(blob) age_preds = age_net.forward() age = age_list[age_preds[0].argmax()] # 在图像中绘制性别和年龄信息 label = "{},{}".format(gender, age) cv2.putText(img, label, (x, y-10), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 255), 2, cv2.LINE_AA) # 显示图像 cv2.imshow('img', img) cv2.waitKey(0) cv2.destroyAllWindows() 上述代码中,我们使用了OpenCV的CascadeClassifier来检测人脸,使用了Caffe深度学习框架进行性别和年龄的识别。在代码中,我们需要加载人脸识别分类器(haarcascade_frontalface_default.xml文件)、性别识别模型(deploy_gender.prototxt和gender_net.caffemodel文件)和年龄识别模型(deploy_age.prototxt和age_net.caffemodel文件),并将它们分别用于人脸检测、性别识别和年龄识别。最后,我们在图像中绘制出人脸位置和性别年龄信息,并将结果显示出来。

最新推荐

【人脸识别】用非常简短的Python代码实现人脸检测

python代码很简短,不像C++等要写几百行代码,但其实你调用的模块,底层都是用C/C++写的 如果imshow出现qt.qpa.plugin: Could not find the Qt platform plugin “cocoa” in “”的报错,请看:Stackoverflow解决...

Python+Dlib+Opencv实现人脸采集并表情判别功能的代码

主要介绍了Python+Dlib+Opencv实现人脸采集并表情判别,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

基于Springboot的网上宠物店系统的设计与实现论文-java-文档-基于Springboot网上宠物店系统的设计与实现文档

基于Springboot的网上宠物店系统的设计与实现论文-java-文档-基于Springboot网上宠物店系统的设计与实现文档论文: !!!本文档只是论文参考文档! 需要项目源码、数据库sql、开发文档、毕设咨询等,请私信联系~ ① 系统环境:Windows/Mac ② 开发语言:Java ③ 框架:SpringBoot ④ 架构:B/S、MVC ⑤ 开发环境:IDEA、JDK、Maven、Mysql ⑥ JDK版本:JDK1.8 ⑦ Maven包:Maven3.6 ⑧ 数据库:mysql 5.7 ⑨ 服务平台:Tomcat 8.0/9.0 ⑩ 数据库工具:SQLyog/Navicat ⑪ 开发软件:eclipse/myeclipse/idea ⑫ 浏览器:谷歌浏览器/微软edge/火狐 ⑬ 技术栈:Java、Mysql、Maven、Springboot、Mybatis、Ajax、Vue等 最新计算机软件毕业设计选题大全 https://blog.csdn.net/weixin_45630258/article/details/135901374 摘 要 目 录 第1章

【元胞自动机】基于matlab元胞自动机交通流仿真【含Matlab源码 827期】.mp4

CSDN佛怒唐莲上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作

面向6G的编码调制和波形技术.docx

面向6G的编码调制和波形技术.docx

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire

Power BI中的数据导入技巧

# 1. Power BI简介 ## 1.1 Power BI概述 Power BI是由微软公司推出的一款业界领先的商业智能工具,通过强大的数据分析和可视化功能,帮助用户快速理解数据,并从中获取商业见解。它包括 Power BI Desktop、Power BI Service 以及 Power BI Mobile 等应用程序。 ## 1.2 Power BI的优势 - 基于云端的数据存储和分享 - 丰富的数据连接选项和转换功能 - 强大的数据可视化能力 - 内置的人工智能分析功能 - 完善的安全性和合规性 ## 1.3 Power BI在数据处理中的应用 Power BI在数据处

建立关于x1,x2 和x1x2 的 Logistic 回归方程.

假设我们有一个包含两个特征(x1和x2)和一个二元目标变量(y)的数据集。我们可以使用逻辑回归模型来建立x1、x2和x1x2对y的影响关系。 逻辑回归模型的一般形式是: p(y=1|x1,x2) = σ(β0 + β1x1 + β2x2 + β3x1x2) 其中,σ是sigmoid函数,β0、β1、β2和β3是需要估计的系数。 这个方程表达的是当x1、x2和x1x2的值给定时,y等于1的概率。我们可以通过最大化似然函数来估计模型参数,或者使用梯度下降等优化算法来最小化成本函数来实现此目的。

智能网联汽车技术期末考试卷B.docx

。。。

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依