帮我写一段完整的代码,使用glove与训练模型基于朴素贝叶斯的文本分类
时间: 2024-03-20 21:44:08 浏览: 70
好的,以下是一个基于GloVe和朴素贝叶斯的文本分类的Python代码示例:
首先,我们需要安装所需的Python库,包括numpy,scikit-learn和nltk:
```python
!pip install numpy
!pip install scikit-learn
!pip install nltk
```
然后加载所需的库:
```python
import numpy as np
from sklearn.naive_bayes import MultinomialNB
from sklearn.metrics import accuracy_score
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfTransformer
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
import nltk
nltk.download('stopwords')
nltk.download('punkt')
```
接下来,我们需要加载预训练的GloVe向量:
```python
def load_glove_vectors(glove_file):
word_vectors = {}
with open(glove_file, encoding="utf8") as f:
for line in f:
values = line.split()
word = values[0]
vector = np.asarray(values[1:], dtype='float32')
word_vectors[word] = vector
return word_vectors
glove_file = "glove.6B.100d.txt" # 请提前下载GloVe文件
word_vectors = load_glove_vectors(glove_file)
```
然后,我们需要准备训练数据和测试数据:
```python
def prepare_data():
# 准备数据
train_data = [
("I love this sandwich.", "positive"),
("This is an amazing place!", "positive"),
("I feel very good about these beers.", "positive"),
("This is my best work.", "positive"),
("What an awesome view", "positive"),
("I do not like this restaurant", "negative"),
("I am tired of this stuff.", "negative"),
("I can't deal with this", "negative"),
("He is my sworn enemy!", "negative"),
("My boss is horrible.", "negative")
]
test_data = [
("The beer was good.", "positive"),
("I do not enjoy my job", "negative"),
("I ain't feeling dandy today.", "negative"),
("I feel amazing!", "positive"),
("Gary is a friend of mine.", "positive"),
("I can't believe I'm doing this.", "negative")
]
train_corpus = [x[0] for x in train_data]
train_labels = [x[1] for x in train_data]
test_corpus = [x[0] for x in test_data]
test_labels = [x[1] for x in test_data]
return train_corpus, train_labels, test_corpus, test_labels
train_corpus, train_labels, test_corpus, test_labels = prepare_data()
```
然后,我们需要将文本数据转换为GloVe向量表示:
```python
def text_to_vector(text):
stop_words = set(stopwords.words('english'))
words = word_tokenize(text.lower())
words = [w for w in words if not w in stop_words]
vector = np.zeros(100)
count = 0
for word in words:
if word in word_vectors:
vector += word_vectors[word]
count += 1
if count != 0:
vector /= count
return vector
def corpus_to_vectors(corpus):
return np.array([text_to_vector(text) for text in corpus])
X_train = corpus_to_vectors(train_corpus)
X_test = corpus_to_vectors(test_corpus)
```
接下来,我们需要使用朴素贝叶斯算法进行分类:
```python
def train_classifier(X_train, y_train):
classifier = MultinomialNB()
classifier.fit(X_train, y_train)
return classifier
classifier = train_classifier(X_train, train_labels)
```
最后,我们可以对测试数据进行预测并计算分类准确率:
```python
def test_classifier(classifier, X_test, y_test):
y_pred = classifier.predict(X_test)
return accuracy_score(y_test, y_pred)
accuracy = test_classifier(classifier, X_test, test_labels)
print("Accuracy:", accuracy)
```
完整代码如下:
阅读全文