两个长度为4的矩阵复数序列进行卷积c语言实现步骤
时间: 2024-02-11 10:07:05 浏览: 53
以下是两个长度为4的矩阵复数序列进行卷积的C语言实现步骤:
1. 定义复数结构体和矩阵结构体
```
typedef struct {
float real;
float imag;
} complex;
typedef struct {
complex *data;
int rows;
int cols;
} matrix;
```
2. 实现FFT算法
可以使用已有的FFT库,如FFTW,也可以手动实现FFT算法。
3. 实现复数卷积
```
void complex_matrix_convolve(matrix *x, matrix *y, matrix *out) {
int i, j;
int n = x->rows * x->cols;
complex *tmp = malloc(n * sizeof(complex));
for (i = 0; i < x->rows; i++) {
for (j = 0; j < x->cols; j++) {
tmp[i * x->cols + j].real = x->data[i * x->cols + j].real;
tmp[i * x->cols + j].imag = x->data[i * x->cols + j].imag;
}
}
fft2d(tmp, x->rows, x->cols); // 对x进行二维FFT
for (i = 0; i < y->rows; i++) {
for (j = 0; j < y->cols; j++) {
tmp[i * y->cols + j].real = y->data[i * y->cols + j].real;
tmp[i * y->cols + j].imag = y->data[i * y->cols + j].imag;
}
}
fft2d(tmp, y->rows, y->cols); // 对y进行二维FFT
for (i = 0; i < n; i++) {
tmp[i].real *= y->data[i].real;
tmp[i].imag *= y->data[i].imag;
} // 将x和y对应位置上的元素相乘
ifft2d(tmp, out->rows, out->cols); // 对相乘结果进行二维IFFT
for (i = 0; i < out->rows; i++) {
for (j = 0; j < out->cols; j++) {
out->data[i * out->cols + j].real = tmp[i * out->cols + j].real;
out->data[i * out->cols + j].imag = tmp[i * out->cols + j].imag;
}
}
free(tmp);
}
```
4. 调用复数矩阵卷积函数
```
int main() {
matrix x = {
.data = (complex[]){
{1, 0}, {2, 0}, {3, 0}, {4, 0},
{5, 0}, {6, 0}, {7, 0}, {8, 0},
{9, 0}, {10, 0}, {11, 0}, {12, 0},
{13, 0}, {14, 0}, {15, 0}, {16, 0}
},
.rows = 4,
.cols = 4
};
matrix y = {
.data = (complex[]){
{1, 0}, {1, 0}, {1, 0}, {1, 0},
{1, 0}, {1, 0}, {1, 0}, {1, 0},
{1, 0}, {1, 0}, {1, 0}, {1, 0},
{1, 0}, {1, 0}, {1, 0}, {1, 0}
},
.rows = 4,
.cols = 4
};
matrix out = {
.data = (complex[]){
{0, 0}, {0, 0}, {0, 0}, {0, 0},
{0, 0}, {0, 0}, {0, 0}, {0, 0},
{0, 0}, {0, 0}, {0, 0}, {0, 0},
{0, 0}, {0, 0}, {0, 0}, {0, 0}
},
.rows = 4,
.cols = 4
};
complex_matrix_convolve(&x, &y, &out); // 对x和y进行矩阵卷积
int i, j;
for (i = 0; i < out.rows; i++) {
for (j = 0; j < out.cols; j++) {
printf("(%f, %f)\t", out.data[i * out.cols + j].real, out.data[i * out.cols + j].imag);
}
printf("\n");
}
return 0;
}
```
以上代码实现了两个长度为4的矩阵复数序列进行卷积,结果存储在out矩阵中。
阅读全文