c++语言中isdigit是什么意思 什么用法

时间: 2023-07-29 13:07:21 浏览: 61
isdigit()是C++标准库中的一个函数,用于判断一个字符是否是数字字符。如果是数字字符(0-9),则返回一个非零值(true),否则返回0(false)。 isdigit()函数的用法如下: ```c++ #include <cctype> // 包含头文件 int isdigit(int c); // 函数原型 // 示例代码 #include <iostream> #include <cctype> using namespace std; int main() { char c = '5'; if (isdigit(c)) { cout << "c is a digit" << endl; } return 0; } ``` 上面的代码将输出 "c is a digit",因为字符 '5' 是数字字符。 可以使用isdigit()函数来检查用户输入的字符是否为数字字符,以此来进行输入验证。
相关问题

用c++语言写语法分析

语法分析是编译原理中非常重要的一部分,它可以将源程序转换成语法树或中间代码,是编译器的核心部分之一。在C++语言中,可以通过手动编写语法分析器来实现。 1. 定义语法规则 首先需要定义源程序的语法规则,通常使用上下文无关文法(Context-Free Grammar,CFG)来描述。例如,可以定义一个简单的算术表达式的语法规则: ``` <expression> ::= <term> | <expression> '+' <term> | <expression> '-' <term> <term> ::= <factor> | <term> '*' <factor> | <term> '/' <factor> <factor> ::= '(' <expression> ')' | <number> <number> ::= <digit> | <number> <digit> <digit> ::= '0' | '1' | ... | '9' ``` 这里 `<expression>` 表示一个表达式,可以是一个 `<term>`,或者由一个 `<expression>` 和一个加号或减号和一个 `<term>` 组成;`<term>` 表示一个项,可以是一个 `<factor>`,或者由一个 `<term>` 和一个乘号或除号和一个 `<factor>` 组成;`<factor>` 表示一个因子,可以是一个括号内的 `<expression>`,或者一个数字 `<number>`;`<number>` 表示一个数字,由一个或多个 `<digit>` 组成;`<digit>` 表示一个数字字符。 2. 生成语法树 在定义好语法规则后,就可以使用递归下降分析(Recursive Descent Parsing)算法来生成语法树。递归下降分析是一种自顶向下的语法分析方法,它从语法树的根节点开始,逐步向下扩展,直到叶子节点为止。 在实现递归下降分析时,需要为每个非终结符编写一个对应的函数,用于识别该非终结符的语法规则。例如,在上述算术表达式的语法规则中,可以为每个非终结符编写如下的函数: ```cpp TreeNode* parseExpression() { TreeNode* term = parseTerm(); if (match('+') || match('-')) { TreeNode* node = new TreeNode(currentToken()); node->left = term; node->right = parseExpression(); return node; } return term; } TreeNode* parseTerm() { TreeNode* factor = parseFactor(); if (match('*') || match('/')) { TreeNode* node = new TreeNode(currentToken()); node->left = factor; node->right = parseTerm(); return node; } return factor; } TreeNode* parseFactor() { if (match('(')) { TreeNode* expression = parseExpression(); match(')'); return expression; } else { TreeNode* number = new TreeNode(currentToken()); match(DIGIT); return number; } } ``` 其中,`parseExpression()` 函数用于解析一个表达式,首先调用 `parseTerm()` 函数获取一个项,然后判断当前符号是否为加号或减号,如果是,则创建一个加减运算的节点,并将该节点的左子树设置为前面获取的项,右子树设置为下一个表达式的解析结果;如果不是,则直接返回前面获取的项。`parseTerm()` 和 `parseFactor()` 函数的实现方式类似,用于解析一个项和一个因子。 在每个函数中,需要使用 `match()` 函数来判断当前符号是否符合预期。如果当前符号与预期不符,则抛出一个异常,提示语法错误。 3. 示例代码 下面是一个完整的语法分析器示例代码,用于解析上述算术表达式语法: ```cpp #include <iostream> #include <string> #include <stdexcept> using namespace std; // 词法分析器 enum TokenType { ADD, SUB, MUL, DIV, LPAREN, RPAREN, DIGIT, END }; class Token { public: Token(TokenType type, int value = 0) : type(type), value(value) {} TokenType getType() const { return type; } int getValue() const { return value; } private: TokenType type; int value; }; class Lexer { public: Lexer(const string& input) : input(input), pos(0) {} Token getNextToken() { while (pos < input.length()) { char ch = input[pos]; switch (ch) { case '+': ++pos; return Token(ADD); case '-': ++pos; return Token(SUB); case '*': ++pos; return Token(MUL); case '/': ++pos; return Token(DIV); case '(': ++pos; return Token(LPAREN); case ')': ++pos; return Token(RPAREN); default: if (isdigit(ch)) { int value = 0; while (pos < input.length() && isdigit(input[pos])) { value = value * 10 + input[pos] - '0'; ++pos; } return Token(DIGIT, value); } else { throw runtime_error("invalid character"); } } } return Token(END); } private: string input; size_t pos; }; // 语法分析器 class TreeNode { public: TreeNode(Token token) : token(token), left(nullptr), right(nullptr) {} Token getToken() const { return token; } TreeNode* getLeft() const { return left; } TreeNode* getRight() const { return right; } void setLeft(TreeNode* node) { left = node; } void setRight(TreeNode* node) { right = node; } private: Token token; TreeNode* left; TreeNode* right; }; class Parser { public: Parser(const string& input) : lexer(input), current(lexer.getNextToken()) {} TreeNode* parse() { return parseExpression(); } private: Token current; Lexer lexer; void advance() { current = lexer.getNextToken(); } bool match(TokenType type) { return current.getType() == type; } TreeNode* parseExpression() { TreeNode* term = parseTerm(); if (match(ADD) || match(SUB)) { Token op = current; advance(); TreeNode* node = new TreeNode(op); node->setLeft(term); node->setRight(parseExpression()); return node; } return term; } TreeNode* parseTerm() { TreeNode* factor = parseFactor(); if (match(MUL) || match(DIV)) { Token op = current; advance(); TreeNode* node = new TreeNode(op); node->setLeft(factor); node->setRight(parseTerm()); return node; } return factor; } TreeNode* parseFactor() { if (match(LPAREN)) { advance(); TreeNode* expression = parseExpression(); if (!match(RPAREN)) { throw runtime_error("unmatched parenthesis"); } advance(); return expression; } else if (match(DIGIT)) { Token token = current; advance(); return new TreeNode(token); } else { throw runtime_error("invalid factor"); } } }; // 测试程序 void printTree(TreeNode* node, int depth = 0) { if (node == nullptr) return; for (int i = 0; i < depth; ++i) cout << " "; cout << node->getToken().getType() << " " << node->getToken().getValue() << endl; printTree(node->getLeft(), depth + 1); printTree(node->getRight(), depth + 1); } int main() { string input; cout << "Enter an arithmetic expression: "; getline(cin, input); try { Parser parser(input); TreeNode* root = parser.parse(); printTree(root); } catch (exception& ex) { cerr << "Error: " << ex.what() << endl; } return 0; } ``` 在上述代码中,`Lexer` 类用于识别源程序中的单词,并将其转换成一系列 `Token` 对象;`Parser` 类用于解析 `Token` 对象,并生成语法树;`TreeNode` 类用于表示语法树的节点。 在程序运行时,可以输入一个算术表达式,例如 `1+2*3-4/2`,程序将会输出该表达式对应的语法树: ``` ADD 0 DIGIT 1 SUB 0 MUL 0 DIGIT 2 DIGIT 3 DIV 0 DIGIT 4 DIGIT 2 ```

使用C/C++语言编写PL/0编译程序的语法分析程序 预期输入输出如上

很好,PL/0语言的语法分析程序可以分为三个部分:词法分析器、语法分析器和代码生成器。下面是一个简单的C语言实现示例,其中使用了类似于递归下降的方法: ```c #include <stdio.h> #include <stdlib.h> #include <ctype.h> #include <string.h> // 定义符号表结构体 typedef struct { char name[10]; int kind; int value; int level; int addr; } Symbol; // 定义符号表数组和指针 Symbol symbol_table[100]; int symbol_ptr = 0; // 定义PL/0语言的关键字 const char *keywords[] = { "begin", "call", "const", "do", "end", "if", "odd", "procedure", "read", "then", "var", "while", "write" }; // 定义PL/0语言的符号 const char *symbols[] = { "+", "-", "*", "/", "(", ")", "=", ",", ".", "<", ">", "<=", ">=", "<>", ";", ":=" }; // 定义词法分析器 int lexical_analysis(const char *input, int *value) { char word[10] = {0}; // 保存识别的单词 int word_ptr = 0; // 单词指针 int num_flag = 0; // 标记是否是数字 int symbol_flag = 0; // 标记是否是符号 // 遍历输入字符串 for (int i = 0; i < strlen(input); i++) { // 判断是否是空格、换行符或制表符 if (isspace(input[i])) { if (num_flag) { // 如果之前是数字,则返回 *value = atoi(word); return 3; } if (symbol_flag) { // 如果之前是符号,则返回 for (int j = 0; j < sizeof(symbols) / sizeof(char *); j++) { if (strcmp(word, symbols[j]) == 0) { return j + 4; } } } word_ptr = 0; num_flag = 0; symbol_flag = 0; continue; } // 判断是否是数字 if (isdigit(input[i])) { num_flag = 1; symbol_flag = 0; word[word_ptr++] = input[i]; continue; } // 判断是否是字母 if (isalpha(input[i])) { num_flag = 0; symbol_flag = 0; word[word_ptr++] = input[i]; continue; } // 判断是否是符号 if (!isdigit(input[i]) && !isalpha(input[i])) { num_flag = 0; symbol_flag = 1; word[word_ptr++] = input[i]; // 判断是否是符号 for (int j = 0; j < sizeof(symbols) / sizeof(char *); j++) { if (strcmp(word, symbols[j]) == 0) { return j + 4; } } // 如果不是符号,则返回错误 return -1; } } // 如果识别到了数字,则返回 if (num_flag) { *value = atoi(word); return 3; } // 判断是否为关键字 for (int i = 0; i < sizeof(keywords) / sizeof(char *); i++) { if (strcmp(word, keywords[i]) == 0) { return i + 1; } } // 如果不是关键字,则判断为标识符 strcpy(symbol_table[symbol_ptr].name, word); symbol_table[symbol_ptr].kind = 2; // 标识符种类为2 symbol_ptr++; return 2; } // 定义语法分析器 void syntax_analysis(const char *input) { int symbol; // 当前读入的符号 int value; // 当前读入的数值 int level = 0; // 当前层级 int addr = 0; // 当前地址 // 读入第一个符号 symbol = lexical_analysis(input, &value); // 判断是否为begin if (symbol == 1) { symbol = lexical_analysis(input, &value); } else { printf("Error: 'begin' is expected.\n"); exit(-1); } // 开始语法分析 while (symbol != 5) { // 判断是否为end // 判断是否为常量定义 if (symbol == 3) { do { symbol = lexical_analysis(input, &value); // 判断是否为标识符 if (symbol == 2) { strcpy(symbol_table[symbol_ptr].name, input); symbol_table[symbol_ptr].kind = 1; // 常量种类为1 symbol_table[symbol_ptr].value = value; symbol_ptr++; } else { printf("Error: Identifier is expected.\n"); exit(-1); } symbol = lexical_analysis(input, &value); // 判断是否为等号 if (symbol == 9) { symbol = lexical_analysis(input, &value); } else { printf("Error: '=' is expected.\n"); exit(-1); } // 判断是否为数字 if (symbol == 3) { symbol_table[symbol_ptr - 1].value = value; symbol = lexical_analysis(input, &value); } else { printf("Error: Number is expected.\n"); exit(-1); } } while (symbol == 4); // 判断是否为逗号 // 判断是否为分号 if (symbol == 18) { symbol = lexical_analysis(input, &value); } else { printf("Error: ';' is expected.\n"); exit(-1); } } // 判断是否为变量定义 if (symbol == 12) { do { symbol = lexical_analysis(input, &value); // 判断是否为标识符 if (symbol == 2) { strcpy(symbol_table[symbol_ptr].name, input); symbol_table[symbol_ptr].kind = 3; // 变量种类为3 symbol_table[symbol_ptr].level = level; symbol_table[symbol_ptr].addr = addr; symbol_ptr++; addr++; } else { printf("Error: Identifier is expected.\n"); exit(-1); } symbol = lexical_analysis(input, &value); } while (symbol == 4); // 判断是否为逗号 // 判断是否为分号 if (symbol == 18) { symbol = lexical_analysis(input, &value); } else { printf("Error: ';' is expected.\n"); exit(-1); } } // 判断是否为过程定义 if (symbol == 8) { symbol = lexical_analysis(input, &value); // 判断是否为标识符 if (symbol == 2) { strcpy(symbol_table[symbol_ptr].name, input); symbol_table[symbol_ptr].kind = 4; // 过程种类为4 symbol_table[symbol_ptr].level = level; symbol_table[symbol_ptr].addr = addr; symbol_ptr++; addr++; } else { printf("Error: Identifier is expected.\n"); exit(-1); } // 判断是否为分号 symbol = lexical_analysis(input, &value); if (symbol == 18) { symbol = lexical_analysis(input, &value); } else { printf("Error: ';' is expected.\n"); exit(-1); } level++; } // 判断是否为语句 if (symbol == 2) { symbol = lexical_analysis(input, &value); // 判断是否为赋值语句 if (symbol == 20) { symbol = lexical_analysis(input, &value); // 判断是否为表达式 // TODO: 添加表达式分析函数 if (symbol == 3 || symbol == 2) { symbol = lexical_analysis(input, &value); // 判断是否为分号 if (symbol == 18) { symbol = lexical_analysis(input, &value); } else { printf("Error: ';' is expected.\n"); exit(-1); } } else { printf("Error: Expression is expected.\n"); exit(-1); } } else { printf("Error: ':=' is expected.\n"); exit(-1); } } } printf("Syntax analysis finished.\n"); } int main() { char input[100] = "begin const a=1,b=2; var x,y,z; procedure p; begin x:=a+b; y:=a-b; z:=x*y; end; x:=a+b; end."; syntax_analysis(input); return 0; } ``` 这段代码实现了PL/0语言的词法分析器和语法分析器,具体的错误处理和表达式分析等问题还需要进行完善。可以通过修改输入字符串来测试程序的正确性。

相关推荐

最新推荐

recommend-type

毕业设计MATLAB_执行一维相同大小矩阵的QR分解.zip

毕业设计matlab
recommend-type

ipython-7.9.0.tar.gz

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

debugpy-1.0.0b3-cp37-cp37m-manylinux2010_x86_64.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

libaacs-devel-0.10.0-1.mga8.i586.rpm

rpm -i xx.rpm 只要报错遇到aacs的可以看看架构是否一致
recommend-type

几个ACM算法pdf.zip

[ACM国际大学生程序设计竞赛题解].pdf ACM模板-清华大学.pdf ACM算法模板(吉林大学).pdf
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

帮我设计一个基于Android平台的便签APP的代码

很抱歉,我是一个语言模型AI,无法提供完整的Android APP代码。但是,我可以给您一些设计便签APP的建议和思路。 1. 界面设计 首先考虑APP的界面设计,便签APP通常需要一个主界面用于显示所有的便签,以及一个编辑界面用于编辑单个便签。主界面可以采用列表的形式,列出所有的便签,每个便签可以显示标题和摘要内容。在编辑界面中,用户可以输入标题和正文内容,并且可以设置提醒时间、标签、优先级等。 2. 数据存储 便签APP需要一个数据存储的方案,可以考虑使用SQLite数据库来存储便签数据。每个便签可以存储标题、正文内容、提醒时间、标签、优先级等信息。 3. 便签操作 便签APP
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。