x_train, t_train, x_test, t_test = load_data('D:\\dogs-vs-cats\\train') network = DeepConvNet() max=20 trainer = Trainer(network, x_train, t_train, x_test, t_test, epochs=max, mini_batch_size=50, optimizer='adam', optimizer_param={'lr':0.01,'betal':0.9,'beta2':0.999}, evaluate_sample_num_per_epoch=1000) trainer.train()

时间: 2023-12-24 13:22:51 浏览: 28
这段代码是用来训练一个深度卷积神经网络模型的。首先调用 load_data() 函数来加载训练集和测试集的数据和标签。然后创建了一个 DeepConvNet 的实例来定义网络结构。接下来定义了一些训练的参数,包括 epochs 的数量、mini-batch 的大小、优化器类型和相应的超参数、每个 epoch 中用于评估的样本数等。然后创建了一个 Trainer 的实例,传入了网络、训练数据和测试数据、训练参数等,用来进行训练。最后调用 trainer.train() 函数开始训练模型。
相关问题

import os import cv2 import numpy as np def load_data(file_dir): all_num = 4000 train_num = int(all_num * 0.75) cats = [] label_cats = [] dogs = [] label_dogs = [] for file in os.listdir(file_dir): file="\\"+file name = file.split(sep='.') if 'cat' in name[0]: cats.append(file_dir + file) label_cats.append(0) else: if 'dog' in name[0]: dogs.append(file_dir + file) label_dogs.append(1) image_list = np.hstack((cats,dogs)) label_list = np.hstack((label_cats, label_dogs)) temp = np.array([image_list, label_list]) # 矩阵转置 temp = temp.transpose() # 打乱顺序 np.random.shuffle(temp) # print(temp) # 取出第一个元素作为 image 第二个元素作为 label image_list = temp[:, 0] label1_train = temp[:train_num, 1] # print(label1_train) # 单出,去掉单字符 label_train = [int(y) for y in label1_train] # print(label_train) label1_test = temp[train_num:, 1] label_test = [int(y) for y in label1_test] data_test=[] data_train = [] for i in range (all_num): if i <train_num: image= image_list[i] image = cv2.imread(image) image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) #将图片转换成RGB格式 image = cv2.resize(image, (28, 28)) image = image.astype('float32') image = np.array(image)/255#归一化[0,1] image=image.reshape(-1,28,28) data_train.append(image) # label_train.append(label_list[i]) else: image = image_list[i] image = cv2.imread(image) image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) image = cv2.resize(image, (28, 28)) image = image.astype('float32') image = np.array(image) / 255 image = image.reshape(-1, 28, 28) data_test.append(image) # label_test.append(label_list[i]) data_train=np.array(data_train) label_train = np.array(label_train) data_test = np.array(data_test) label_test = np.array(label_test) return data_train,label_train,data_test, label_test

这段代码是定义了一个函数load_data,用来加载数据集,并将数据集划分为训练集和测试集。函数接收一个参数file_dir,表示数据集所在的路径。首先,定义了all_num和train_num两个变量,用来表示数据集的总数和训练集的数量,其中训练集的数量是总数的75%。然后,定义了四个空列表,分别用来存储猫的图片路径、猫的标签、狗的图片路径和狗的标签。接着,使用os.listdir函数遍历数据集路径下的所有文件,对每个文件进行判断,如果文件名中包含'cat'字符串,则将该文件的路径添加到cats列表中,并将标签0添加到label_cats列表中;如果文件名中包含'dog'字符串,则将该文件的路径添加到dogs列表中,并将标签1添加到label_dogs列表中。然后,使用numpy.hstack函数将猫和狗的图片路径和标签拼接成两个一维数组image_list和label_list。接着,使用numpy.array函数将image_list和label_list拼接成一个二维数组temp,并将其转置,使得图片路径和标签分别位于temp的第一列和第二列。然后,使用numpy.random.shuffle函数对temp进行打乱顺序操作。接着,将temp的第一列(即图片路径)赋值给image_list,将temp的前train_num行的第二列(即标签)赋值给label1_train,将temp的后面部分的第二列(即标签)赋值给label1_test。然后,将label1_train和label1_test从字符串类型转换为整型,并分别赋值给label_train和label_test。最后,调用前面提到的数据预处理代码,将image_list中的每张图片进行预处理,并将处理后的图片数据分别添加到data_train和data_test列表中,并将列表转换为numpy数组类型。最后,函数返回data_train、label_train、data_test和label_test四个变量。

FileNotFoundError: class `CustomDataset` in mmpretrain/datasets/custom.py: [Errno 2] No such file or directory: '../data/cats_dogs_dataset/training_set/'

根据引用\[1\]中的内容,您在py文件中需要修改数据集的部分。具体来说,您需要修改`data`字典中的一些参数,例如`samples_per_gpu`和`workers_per_gpu`。此外,您还需要在`train`、`val`和`test`的`pipeline`中进行相应的修改。 根据引用\[2\]中的内容,您还需要在`configs/_base_/models/faster_rcnn_r50_fpn.py`文件中将`num_classes`的值从80修改为20。此外,在`configs/_base_/datasets/coco_detection.py`文件中,您还需要将`data_root`改为绝对路径。 根据引用\[3\]中的内容,`custom.py`是`datasets/coco.py`中`CocoDataset`的父类,它包含了一些重要的方法,例如`load_annotations()`、`get_ann_info()`、`_filter_imgs()`、`_set_group_flag()`、`__getitem__()`、`prepare_train_img()`和`prepare_test_img()`。这些方法在数据集的加载和预处理过程中起到了关键作用。 根据您提供的错误信息`FileNotFoundError: class 'CustomDataset' in mmpretrain/datasets/custom.py: \[Errno 2\] No such file or directory: '../data/cats_dogs_dataset/training_set/'`,看起来是找不到`../data/cats_dogs_dataset/training_set/`目录下的`CustomDataset`类。请确保该目录和文件存在,并且路径正确。 综上所述,您需要检查文件路径是否正确,并确保您已经按照引用中的说明进行了相应的修改。 #### 引用[.reference_title] - *1* [mmdet训练中数据集导入](https://blog.csdn.net/ydestspring/article/details/126547437)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [linux配置mmdetection2.8训练自定义coco数据集(一)](https://blog.csdn.net/wulele2/article/details/113468646)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [mmdetection源码笔记(三):创建数据集模型之datasets/custom.py的解读(下)](https://blog.csdn.net/qq_41375609/article/details/100004100)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

相关推荐

最新推荐

城域级水系设计与流域综合治理探索.zip

城域级水系设计与流域综合治理探索.zip

Langchain Ollama

Langchain Ollama

kali linux安装教程步骤描述与说明.docx

kali linux安装教程 Kali Linux安装过程中可能遇到的一些常见问题包括: ISO镜像验证问题: 镜像下载不完整或损坏,导致无法正常启动安装程序。解决方法是重新下载官方发布的ISO镜像,并通过MD5或SHA256校验工具验证文件完整性。 启动介质问题: 制作启动U盘时操作不当,导致启动盘不可用。需要正确使用如Rufus、Balena Etcher等工具制作启动盘,并确保BIOS设置中已启用从USB设备启动。 硬件兼容性问题: Kali Linux安装在老旧或特殊硬件上时可能出现驱动兼容性问题,如无线网卡、显卡等。解决方法是查找并安装合适的驱动程序。 分区与格式化问题: 分区时误操作导致数据丢失或无法正确安装。安装前需正确规划分区方案,并确保正确格式化分区为可支持的文件系统(如ext4)。 网络连接问题: 安装完成后无法联网。可能是因为没有适配的网络驱动或DHCP服务未能正常启动。解决方法是检查网络设置,手动配置网络或安装相应驱动。 软件源配置问题: 更新软件源列表时出现错误或更新缓慢。可能是因为默认源在国外,国内用户可以替换为国内镜像源加速下载。 图形界面

实验1 磁盘格式化及分区

1、虚拟机中安装DOS系统 2、DOS系统中进行磁盘分区及格式化 3、运行工具软件进行磁盘分区

河长制平台上的生态河湖建设20200109.zip

河长制平台上的生态河湖建设20200109.zip

大数据平台架构与原型实现 数据中台建设实战.pptx

《大数据平台架构与原型实现:数据中台建设实战》是一本针对大数据技术发展趋势的实用指导手册。通过对该书的内容摘要进行梳理,可以得知,本书主要围绕大数据平台架构、原型实现和数据中台建设展开,旨在帮助读者更好地了解和掌握大数据平台架构和原型实现的方法,并通过数据中台建设实战获取实践经验。本书深入浅出地介绍了大数据平台架构的基本原理和设计思路,辅以实际案例和实践应用,帮助读者深入理解大数据技术的核心概念和实践技能。 首先,本书详细介绍了大数据平台架构的基础知识和技术原理。通过对分布式系统、云计算和大数据技术的介绍,帮助读者建立对大数据平台架构的整体认识。在此基础上,本书结合实际案例,详细阐述了大数据平台架构的设计和实现过程,使读者能够深入了解大数据平台的构建流程和关键环节。 其次,本书重点讲解了原型实现的关键技术和方法。通过介绍原型设计的基本原则,读者可以了解如何在实践中快速验证大数据平台架构的可行性和有效性。本书的案例介绍和实践指导,使读者可以通过模拟实际场景,实现原型的快速迭代和优化,为企业的大数据应用提供可靠的支撑和保障。 最后,本书还重点介绍了数据中台建设的重要性和实战经验。数据中台作为企业实现数据驱动业务增长的关键,其建设和运营需要有系统的规划和实际经验。通过本书的案例介绍和技术实战,读者可以了解数据中台建设的关键环节和方法,帮助企业快速搭建和运营数据中台,实现数据的统一管理和应用,提升业务运营效率和效果。 综上所述,《大数据平台架构与原型实现:数据中台建设实战》这本书通过清晰的思维导图、精彩的内容摘要和详细的案例介绍,为读者提供了一本全面系统的大数据平台架构实战指南。通过阅读本书,读者可以系统了解大数据平台的搭建原理和方法,掌握原型实现的关键技术和实践经验,以及深入理解数据中台建设的重要性和实战经验。本书将成为大数据领域从业者、研究人员和企业决策者的宝贵参考,帮助他们更好地利用大数据技术,推动企业业务的发展和创新。

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire

如何利用 DFS 算法解决棋盘类游戏问题

![如何利用 DFS 算法解决棋盘类游戏问题](https://img-blog.csdnimg.cn/20210409210511923.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2tvY2h1bmsxdA==,size_16,color_FFFFFF,t_70) # 1. DFS 算法简介与原理 深度优先搜索算法(Depth First Search,DFS)是一种常用的图遍历算法,其主要思想是从起始节点出发,尽可能深地搜索每

某视频中展现出了一个中学为丰富课间活动,组织了若干个学生在操场进行数学变形游戏。即固定若干个同学,先排成一列,然后依次变为“2”,“3”,“4”,....,“10”等。 1、建立数学模型,给出编排过程中的最优路径。以15个学生为例,计算出编排路径,并列出相应的人员坐标。

为了解决这个问题,我们可以使用图论中的最短路径算法来找到最优路径。我们可以将每个学生看作图中的一个节点,节点之间的距离表示他们在排列中的位置差异。以下是一个示例的数学模型和求解过程: 1. 建立数学模型: - 定义图G=(V, E),其中V为学生节点的集合,E为边的集合。 - 对于每个学生节点v∈V,我们需要将其与其他学生节点进行连接,形成边。边的权重可以定义为两个学生节点在排列中的位置差异的绝对值。 2. 计算最优路径: - 使用最短路径算法,例如Dijkstra算法或Floyd-Warshall算法,来计算从起始节点到目标节点的最短路径。 - 在本例中,起始节点

医药行业之消化介入专题报告:国内市场方兴未艾,国产设备+耗材崛起-0722-西南证券-36页.pdf

医药行业的消化介入领域备受关注,国内市场呈现方兴未艾的趋势。根据西南证券研究发展中心2019年7月发布的报告,国产设备和耗材正在崛起,对消化内窥镜这一主要类型的设备需求不断增长。消化内窥镜在消化道早癌诊断和治疗中发挥着重要作用,尤其是在中国这样消化系统疾病高发的国家。据统计,2015年中国新发癌症患者达到429.2万例,其中食管癌、胃癌、结直肠癌占比分别为51%、31%和24%,位列全球首位。然而,早期癌症的筛查和检测在中国仍然存在空白,胃镜检查率仅为日本的1/5,肠镜检查率更是日本的1/7,美国的1/9,导致患者的生存率远低于发达国家。以日本为例,食管癌早期患者的五年生存率高达77.9%,而晚期仅为11.5%。因此,国内市场对于消化道早癌诊断和治疗设备的需求量巨大,国产设备和耗材有望崛起并占据市场份额。 消化介入领域的发展受益于医疗技术的不断进步和国家政策的支持。据陈铁林等分析师指出,消化内窥镜的应用范围将得到进一步拓展,其在早癌筛查、溃疡检测和其他消化系统疾病诊疗方面的应用将越来越广泛。此外,国产设备和耗材的质量和技术也在不断提升,使得国内厂商能够与国际巨头竞争,甚至在某些领域取得领先地位。消化内窥镜市场的崛起,将不仅带动整个医疗器械行业的发展,也为国内消化道疾病患者提供更好的诊疗服务和生存机会。 除了市场需求和技术进步,消化介入领域还受到了政策和监管环境的影响。政府对于医疗器械行业实施了一系列激励政策,包括减税、资金支持和技术培训等措施,为国内企业提供了良好的发展环境。与此同时,监管部门也对医疗器械的质量和安全进行了严格监管,加强了对产品注册和上市的审核流程,保障了消费者的利益和健康。消化介入领域的健康发展不仅需要市场需求和技术支持,还需要政策的支持和监管的引导,以确保医疗器械行业持续稳定的发展。 总的来说,医药行业的消化介入领域在国内市场呈现出蓬勃发展的趋势。国产设备和耗材正在崛起,消化内窥镜等设备在消化道早癌诊断和治疗中发挥着重要作用。市场需求、技术进步、政策支持和监管环境共同推动了这一领域的健康发展,也为国内医疗器械行业带来了新的机遇和挑战。随着消化介入领域的不断拓展和完善,相信国内企业将在未来取得更大的发展,为消化系统疾病患者提供更好的诊疗服务,为医疗器械行业的发展贡献更多的力量。