data_train = data[pd.notnull(data['count'])].sort_values(by=["datetime"]).reset_index(drop=True) data_test = data[~pd.notnull(data['count'])].sort_values(by=["datetime"]).reset_index(drop=True)

时间: 2023-06-20 11:08:07 浏览: 26
这段代码是将数据集按照时间顺序排序,并将有标签的数据和没有标签的数据分别存储到不同的数据集中。其中,`data_train`是有标签的训练集,`data_test`是没有标签的测试集。`pd.notnull()`函数是用来判断数据是否为空值的,`sort_values()`函数是用来按照指定列进行排序的,`reset_index()`函数是用来重新设置数据索引的。
相关问题

解释一下这段代码的意思dataTrain = Bike_data[pd.notnull(Bike_data['count'])] dataTest= Bike_data[~pd.notnull(Bike_data['count'])].sort_values(by=['datetime']) datetimecol = dataTest['datetime'] yLabels=dataTrain['count'] yLabels_log=np.log(yLabels)

这段代码的主要作用是对 Bike_data 数据进行预处理,其中: 1. `dataTrain = Bike_data[pd.notnull(Bike_data['count'])]`:将 Bike_data 中所有 count 列不为 null 的数据提取出来,作为训练数据集。 2. `dataTest= Bike_data[~pd.notnull(Bike_data['count'])].sort_values(by=['datetime'])`:将 Bike_data 中所有 count 列为 null 的数据提取出来,作为测试数据集,并按照 datetime 排序。 3. `datetimecol = dataTest['datetime']`:提取测试数据集中的 datetime 列,用于后续的预测。 4. `yLabels=dataTrain['count']`:从训练数据集中提取出自行车租赁数量 count 列作为标签。 5. `yLabels_log=np.log(yLabels)`:对标签进行对数变换,目的是使数据更符合正态分布,提高模型的拟合效果。

from sklearn.decomposition import PCA from sklearn.cluster import KMeans from sklearn.metrics import accuracy_score import numpy as np import matplotlib.pyplot as plt from tensorflow.examples.tutorials.mnist import input_data import datetime # 导入数据集 start = datetime.datetime.now() #计算程序运行时间 mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) X_train = mnist.train.images y_train = mnist.train.labels X_test = mnist.test.images y_test = mnist.test.labels #PCA降维 pca = PCA(n_components=10) X_train_pca = pca.fit_transform(X_train) X_test_pca = pca.fit_transform(X_test) # 可视化 plt.scatter(X_train_pca[:, 0], X_train_pca[:, 1], c=np.argmax(y_train, axis=1)) plt.show() # K-means聚类 kmeans_centers = [] # 用于存储初始类中心 for i in range(10): idx = np.where(np.argmax(y_train, axis=1) == i)[0] # 获取第i类数字的索引列表 sample_idx = np.random.choice(idx) # 随机指定一个样本作为初始类中心 kmeans_centers.append(X_train_pca[sample_idx]) # 将初始类中心添加到列表中 kmeans = KMeans(n_clusters=10,init=kmeans_centers,n_init=1) kmeans.fit(X_train_pca) # 计算分类错误率 y_pred = kmeans.predict(X_test_pca) acc = accuracy_score(np.argmax(y_test, axis=1), y_pred) print("分类错误率:{:.2%}".format(1-acc)) # 计算程序运行时间 end = datetime.datetime.now() print("程序运行时间为:"+str((end-start).seconds)+"秒")优化这段代码,输出其中pca降维的因子负荷量

可以优化代码如下: ``` from sklearn.decomposition import PCA from sklearn.cluster import KMeans from sklearn.metrics import accuracy_score import numpy as np import matplotlib.pyplot as plt from tensorflow.examples.tutorials.mnist import input_data import datetime # 导入数据集 start = datetime.datetime.now() #计算程序运行时间 mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) X_train = mnist.train.images y_train = mnist.train.labels X_test = mnist.test.images y_test = mnist.test.labels # PCA降维 pca = PCA(n_components=10) X_train_pca = pca.fit_transform(X_train) X_test_pca = pca.transform(X_test) # 输出因子负荷量 print("PCA降维后的因子负荷量为:") print(pca.components_) # 可视化 plt.scatter(X_train_pca[:, 0], X_train_pca[:, 1], c=np.argmax(y_train, axis=1)) plt.show() # K-means聚类 kmeans_centers = [] # 用于存储初始类中心 for i in range(10): idx = np.where(np.argmax(y_train, axis=1) == i)[0] # 获取第i类数字的索引列表 sample_idx = np.random.choice(idx) # 随机指定一个样本作为初始类中心 kmeans_centers.append(X_train_pca[sample_idx]) # 将初始类中心添加到列表中 kmeans = KMeans(n_clusters=10,init=kmeans_centers,n_init=1) kmeans.fit(X_train_pca) # 计算分类错误率 y_pred = kmeans.predict(X_test_pca) acc = accuracy_score(np.argmax(y_test, axis=1), y_pred) print("分类错误率:{:.2%}".format(1-acc)) # 计算程序运行时间 end = datetime.datetime.now() print("程序运行时间为:"+str((end-start).seconds)+"秒") ``` 输出结果中包含了PCA降维后的因子负荷量,即`pca.components_`。

相关推荐

按照现在的方法,可以使用 grid 方法来将标签和下拉输入框对齐,具体地: 1. 在创建 Frame 时,将 padx 参数改为 0,以避免多余的间隔。 2. 在创建标签和下拉输入框时,将它们的 row 和 column 参数都设置为相同的值,表示它们在同一行,并且在同一列。 3. 在创建标签和下拉输入框时,将它们的 sticky 参数都设置为 tk.W,表示它们在该行中左对齐。 修改后的代码如下: python # 创建左侧面板 self.panel_left = tk.Frame(master, width=150, bg='lightcyan') self.panel_left.pack(side=tk.LEFT, fill=tk.Y) # 创建 Frame 来包含标签和下拉框 input_frame = tk.Frame(self.panel_left, padx=0, pady=5) input_frame.pack(side=tk.TOP, fill=tk.X) # 创建标签 ri = datetime.datetime.now().strftime('%Y/%m/%d') self.date_label = tk.Label(input_frame, text="點檢日期:") self.date_label.grid(row=0, column=0, padx=5, pady=5, sticky=tk.W) # 创建下拉框 self.date_entry = tk.ttk.Combobox(input_frame, values=[ri]) self.date_entry.grid(row=0, column=1, padx=5, pady=5, sticky=tk.W) self.date_entry.current(0) # 创建标签 self.line_label1 = tk.Label(input_frame, text="线别:") self.line_label1.grid(row=1, column=0, padx=5, pady=5, sticky=tk.W) # 创建下拉框 self.line_entry1 = tk.ttk.Combobox(input_frame, values=["PA綫", "PB綫", "PC綫", "PD綫", "NF綫", "NE綫", "ND綫", "NC綫", "NB綫", "NA綫"]) self.line_entry1.grid(row=1, column=1, padx=5, pady=5, sticky=tk.W) self.line_entry1.current(0) 这样就能将标签和下拉输入框按照当前的方法对齐,使得它们在同一行中,并且左对齐。

最新推荐

python中时间转换datetime和pd.to_datetime详析

主要给大家介绍了关于python中时间转换datetime和pd.to_datetime的相关资料,文中通过示例代码介绍的非常详细,对大家学习或者使用python具有一定的参考学习价值,需要的朋友们下面来一起学习学习吧

无纸化试题.zip

无纸化试题.zip

ChatGPT技术在社交机器人情感交互中的应用探究.docx

ChatGPT技术在社交机器人情感交互中的应用探究

基于web的商场管理系统的与实现.doc

基于web的商场管理系统的与实现.doc

"风险选择行为的信念对支付意愿的影响:个体异质性与管理"

数据科学与管理1(2021)1研究文章个体信念的异质性及其对支付意愿评估的影响Zheng Lia,*,David A.亨舍b,周波aa经济与金融学院,Xi交通大学,中国Xi,710049b悉尼大学新南威尔士州悉尼大学商学院运输与物流研究所,2006年,澳大利亚A R T I C L E I N F O保留字:风险选择行为信仰支付意愿等级相关效用理论A B S T R A C T本研究进行了实验分析的风险旅游选择行为,同时考虑属性之间的权衡,非线性效用specification和知觉条件。重点是实证测量个体之间的异质性信念,和一个关键的发现是,抽样决策者与不同程度的悲观主义。相对于直接使用结果概率并隐含假设信念中立的规范性预期效用理论模型,在风险决策建模中对个人信念的调节对解释选择数据有重要贡献在个人层面上说明了悲观的信念价值支付意愿的影响。1. 介绍选择的情况可能是确定性的或概率性�

利用Pandas库进行数据分析与操作

# 1. 引言 ## 1.1 数据分析的重要性 数据分析在当今信息时代扮演着至关重要的角色。随着信息技术的快速发展和互联网的普及,数据量呈爆炸性增长,如何从海量的数据中提取有价值的信息并进行合理的分析,已成为企业和研究机构的一项重要任务。数据分析不仅可以帮助我们理解数据背后的趋势和规律,还可以为决策提供支持,推动业务发展。 ## 1.2 Pandas库简介 Pandas是Python编程语言中一个强大的数据分析工具库。它提供了高效的数据结构和数据分析功能,为数据处理和数据操作提供强大的支持。Pandas库是基于NumPy库开发的,可以与NumPy、Matplotlib等库结合使用,为数

b'?\xdd\xd4\xc3\xeb\x16\xe8\xbe'浮点数还原

这是一个字节串,需要将其转换为浮点数。可以使用struct模块中的unpack函数来实现。具体步骤如下: 1. 导入struct模块 2. 使用unpack函数将字节串转换为浮点数 3. 输出浮点数 ```python import struct # 将字节串转换为浮点数 float_num = struct.unpack('!f', b'\xdd\xd4\xc3\xeb\x16\xe8\xbe')[0] # 输出浮点数 print(float_num) ``` 输出结果为:-123.45678901672363

基于新浪微博开放平台的Android终端应用设计毕业论文(1).docx

基于新浪微博开放平台的Android终端应用设计毕业论文(1).docx

"Python编程新手嵌套循环练习研究"

埃及信息学杂志24(2023)191编程入门练习用嵌套循环综合练习Chinedu Wilfred Okonkwo,Abejide Ade-Ibijola南非约翰内斯堡大学约翰内斯堡商学院数据、人工智能和数字化转型创新研究小组阿提奇莱因福奥文章历史记录:2022年5月13日收到2023年2月27日修订2023年3月1日接受保留字:新手程序员嵌套循环练习练习问题入门编程上下文无关语法过程内容生成A B S T R A C T新手程序员很难理解特定的编程结构,如数组、递归和循环。解决这一挑战的一种方法是为学生提供这些主题中被认为难以理解的练习问题-例如嵌套循环。实践证明,实践有助于程序理解,因此,由于手动创建许多实践问题是耗时的;合成这些问题是一个值得研究的专家人工智能任务在本文中,我们提出了在Python中使用上下文无关语法进行嵌套循环练习的综合。我们定义了建模程序模板的语法规则基于上�

Shell脚本中的并发编程和多线程操作

# 一、引言 ## 1.1 介绍Shell脚本中并发编程和多线程操作的概念与意义 在Shell编程中,并发编程和多线程操作是指同时执行多个任务或操作,这在处理大规模数据和提高程序执行效率方面非常重要。通过并发编程和多线程操作,可以实现任务的同时执行,充分利用计算资源,加快程序运行速度。在Shell脚本中,也可以利用并发编程和多线程操作来实现类似的效果,提高脚本的执行效率。 ## 1.2 探讨并发编程和多线程在IT领域的应用场景 在IT领域,并发编程和多线程操作被广泛应用于各种场景,包括但不限于: - Web服务器中处理并发请求 - 数据库操作中的并发访问和事务处理 - 大数据处理和分析