data_train = data[pd.notnull(data['count'])].sort_values(by=["datetime"]).reset_index(drop=True) data_test = data[~pd.notnull(data['count'])].sort_values(by=["datetime"]).reset_index(drop=True)
时间: 2023-06-20 13:08:07 浏览: 73
这段代码是将数据集按照时间顺序排序,并将有标签的数据和没有标签的数据分别存储到不同的数据集中。其中,`data_train`是有标签的训练集,`data_test`是没有标签的测试集。`pd.notnull()`函数是用来判断数据是否为空值的,`sort_values()`函数是用来按照指定列进行排序的,`reset_index()`函数是用来重新设置数据索引的。
相关问题
解释一下这段代码的意思dataTrain = Bike_data[pd.notnull(Bike_data['count'])] dataTest= Bike_data[~pd.notnull(Bike_data['count'])].sort_values(by=['datetime']) datetimecol = dataTest['datetime'] yLabels=dataTrain['count'] yLabels_log=np.log(yLabels)
这段代码的主要作用是对 Bike_data 数据进行预处理,其中:
1. `dataTrain = Bike_data[pd.notnull(Bike_data['count'])]`:将 Bike_data 中所有 count 列不为 null 的数据提取出来,作为训练数据集。
2. `dataTest= Bike_data[~pd.notnull(Bike_data['count'])].sort_values(by=['datetime'])`:将 Bike_data 中所有 count 列为 null 的数据提取出来,作为测试数据集,并按照 datetime 排序。
3. `datetimecol = dataTest['datetime']`:提取测试数据集中的 datetime 列,用于后续的预测。
4. `yLabels=dataTrain['count']`:从训练数据集中提取出自行车租赁数量 count 列作为标签。
5. `yLabels_log=np.log(yLabels)`:对标签进行对数变换,目的是使数据更符合正态分布,提高模型的拟合效果。
阅读全文