用seaborn绘制散点图和线性回归图
时间: 2023-09-17 13:12:20 浏览: 193
好的,以下是使用seaborn绘制散点图和线性回归图的示例代码:
```python
import seaborn as sns
import matplotlib.pyplot as plt
# 加载数据集
tips = sns.load_dataset('tips')
# 使用scatterplot绘制散点图
sns.scatterplot(x='total_bill', y='tip', data=tips)
# 使用lmplot绘制线性回归图
sns.lmplot(x='total_bill', y='tip', data=tips)
# 显示图形
plt.show()
```
上述代码利用 seaborn 库中的 scatterplot 方法绘制散点图,利用 lmplot 方法绘制线性回归图。代码中的 tips 数据集是 seaborn 提供的一个示例数据集,包含了餐厅账单总额(total_bill)、小费(tip)等信息。
如果要绘制不同类别的散点图或线性回归图,可以使用 hue 参数指定不同的分类变量。例如,下面的示例绘制不同性别顾客的散点图和线性回归图:
```python
# 绘制分类散点图和线性回归图
sns.scatterplot(x='total_bill', y='tip', hue='sex', data=tips)
sns.lmplot(x='total_bill', y='tip', hue='sex', data=tips)
# 显示图形
plt.show()
```
以上示例中,hue 参数指定了性别变量,绘制了两张图分别表示男性和女性的散点图和线性回归图。
阅读全文