simulated <- rCopula(n = n, t.copula)

时间: 2024-03-16 10:43:56 浏览: 13
在这个代码中,您使用了 `rCopula` 函数生成具有 t 分布 Copula 的随机样本。`t.copula` 变量应该是一个 `tCopula` 类型的对象,其中包含有关 Copula 的参数,例如相关系数和自由度。然而,根据您提供的错误信息,似乎 `tCopula` 对象中的某些参数值不正确。 为了解决这个问题,您可以尝试检查 `tCopula` 对象中的参数值是否正确,并确保其符合 Copula 的要求。可以使用 `summary` 函数查看 `tCopula` 对象的摘要信息。例如: ``` summary(t.copula) ``` 这将显示 Copula 的相关信息,例如参数值和相关系数。您可以检查这些值是否正确,并根据需要进行更正。 如果您仍然无法解决问题,请提供更多的上下文和代码,以便我能够更好地帮助您。
相关问题

1 Simulate a dataset containing continuous traits with given ℎ 2 . Split it into training and testing datasets with proportion 4 ∶ 1. set.seed(20132014) n <- 5000 p <- 1000 h <- c(0.2, 0.8)[1] # simulate genotype (not exactly) x_r <- matrix(rnorm(n * p), ncol = p) xmean <- matrix(rep(colMeans(x_r), n), ncol=p, byrow = TRUE) xsd <- matrix(rep(apply(x_r, 2, sd), n), ncol=p, byrow = TRUE) x <- (x_r - xmean)/xsd # ... 2 Please perform the marginal model. ## [1] 526 776 50 557 801 345 298 559 178 214 1 2 −0.025 0.000 0.025 0.050 0 250 500 750 1000 snp u • Show the locations of significant SNPs. • Replicate above figure, and highlight the significant coefficents in red

For the first question, I understand that you want me to simulate a dataset with continuous traits and split it into training and testing datasets with a given heritability (h2) and some specific code. Here is the modified code to simulate the dataset and split it into training and testing datasets: ```R set.seed(20132014) n <- 5000 p <- 1000 h2 <- 0.2 # simulate genotype (not exactly) x_r <- matrix(rnorm(n * p), ncol = p) xmean <- matrix(rep(colMeans(x_r), n), ncol=p, byrow = TRUE) xsd <- matrix(rep(apply(x_r, 2, sd), n), ncol=p, byrow = TRUE) x <- (x_r - xmean)/xsd # simulate phenotype g <- colSums(x) * sqrt(2 * h2 / p) # genetic effect e <- rnorm(n) * sqrt(1 - h2) # environmental effect y <- g + e # phenotype # split into training and testing datasets train_idx <- sample(1:n, size = n * 0.8, replace = FALSE) x_train <- x[train_idx, ] y_train <- y[train_idx] x_test <- x[-train_idx, ] y_test <- y[-train_idx] ``` This code simulates a dataset with n = 5000 individuals and p = 1000 SNPs. The heritability is set to 0.2. The code first simulates the genotype matrix x, and then uses it to simulate the phenotype y. The genetic effect is proportional to the sum of each SNP's effect, and the environmental effect is simulated from a normal distribution. Finally, the code splits the dataset into training (80%) and testing (20%) datasets. For the second question, I understand that you want me to perform a marginal model and then show the locations of significant SNPs and replicate a figure highlighting significant coefficients in red. Here is the code to perform the marginal model and visualize the results: ```R library(glmnet) set.seed(1234) # fit marginal model cvfit <- cv.glmnet(x_train, y_train, alpha = 0) lam <- cvfit$lambda.min fit <- glmnet(x_train, y_train, alpha = 0, lambda = lam) # identify significant SNPs coef <- coef(fit) nz_idx <- which(coef != 0) nz_snps <- nz_idx - 1 # visualize results par(mar = c(5, 4, 4, 8) + 0.1) plot(coef, xvar = "lambda", label = TRUE, main = "Marginal Model") abline(v = lam, lty = 2) significant_snps <- which(abs(coef) > 0.1) points(coef[significant_snps], col = "red", pch = 19, cex = 1.2) ``` This code fits a marginal model using the glmnet package and identifies significant SNPs based on a threshold of 0.1. The code then visualizes the results using the plot function and highlights the significant SNPs in red. The abline function adds a vertical line at the optimal lambda value selected by cross-validation.

设a,b,c是任意三个数,满足0<=a<=1,0<=b<=1,0<=c<=1,且a+b+c=1,当a,b,c的值发生变化时另外两个数也相应改变,用模拟退火求解过程思路及matlab代码

首先,我们可以定义一个目标函数来衡量当前解的优劣。在这个问题中,我们可以使用距离函数来计算当前解与目标值1的差距,即: $$f(a,b,c) = |(a+b+c) - 1|$$ 接下来,我们可以使用模拟退火算法来搜索最优解。模拟退火算法是一种全局优化算法,它可以在搜索空间中找到全局最优解或接近最优解的解。 模拟退火算法的基本思路是从一个初始解开始,在每次迭代中产生一个新解,并根据一定的概率接受新解或保留当前解。概率的计算基于Metropolis准则,即接受一个劣解的概率与当前温度和解的差距有关。 在本问题中,我们可以使用一个随机的初始解,并在每次迭代中随机改变当前解的一个变量,然后计算新解的目标函数值。如果新解比当前解更优,则直接接受新解。否则,我们以一定的概率接受新解,这个概率随着迭代的进行而降低,以便更好地收敛到全局最优解。 下面是MATLAB代码实现: ```matlab % 目标函数 function y = f(a,b,c) y = abs(a+b+c-1); end % 模拟退火 function [a,b,c] = simulated_annealing() % 初始解 a = rand(); b = rand(); c = rand(); T = 1; % 初始温度 Tmin = 1e-5; % 最低温度 alpha = 0.99; % 降温速率 while T > Tmin % 随机改变一个变量 r = randi(3); if r == 1 anew = a + (rand()-0.5)*T; if anew >= 0 && anew <= 1 delta = f(anew,b,c) - f(a,b,c); if delta < 0 || exp(-delta/T) > rand() a = anew; end end elseif r == 2 bnew = b + (rand()-0.5)*T; if bnew >= 0 && bnew <= 1 delta = f(a,bnew,c) - f(a,b,c); if delta < 0 || exp(-delta/T) > rand() b = bnew; end end else cnew = c + (rand()-0.5)*T; if cnew >= 0 && cnew <= 1 delta = f(a,b,cnew) - f(a,b,c); if delta < 0 || exp(-delta/T) > rand() c = cnew; end end end % 降温 T = alpha * T; end end % 测试 [a,b,c] = simulated_annealing() ``` 在这个实现中,我们使用了三个变量来表示解向量,然后随机改变其中一个变量的值。我们还使用了一些参数来控制算法的行为,如初始温度,最低温度和降温速率。实际上,这些参数的选择对算法的性能和结果有很大的影响,需要根据具体问题进行调整。

相关推荐

(a) Consider the case of a European Vanilla Call option which is path independent. Examine the convergence of the Monte Carlo Method using the programme given in ‘MC Call.m’. How does the error vary with the number of paths nP aths? The current time is t = 0 and the Expiry date of the option is t = T = 0.5. Suppose that the current value of the underlying asset is S(t = 0) = 100 and the Exercise price is E = 100, with a risk free interest rate of r = 0.04 and a volatility of σ = 0.5. (b) Now repeat part (a) above but assume that the volatility is σ = 0.05. Does the change in the volatility σ influence the convergence of the Monte Carlo Method? (c) Now repeat part (a) but instead of taking one big step from t = 0 to t = T divide the interval into nSteps discrete time steps by using the programme given in ‘MC Call Small Steps.m’. Confirm that for path independent options, the value of nP aths determines the rate of convergence and that the value of nSteps can be set to 1. (d) Now let us consider path dependent options. The programme given in ‘MC Call Small Steps.m’ is the obvious starting point here. We assume that the current time is t = 0 and the expiry date of the option is t = T = 0.5. The current value of the underlying asset is S(t = 0) = 100 and the risk free interest rate is r = 0.05 and the volatility is σ = 0.3. (i) Use the Monte Carlo Method to estimate the value of an Arithematic Average Asian Strike Call option with Payoff given by max(S(T) − S, ¯ 0). (ii) Use the Monte Carlo Method to estimate the value of an Up and Out Call option with Exercise Price E = 100 and a barrier X = 150. (iii) Comment on the the rate of convergence for part (i) and (ii) above with respect to the parameters nP aths and nP aths使用matlab编程

用中文总结以下内容: A number of experimental and numerical investigations have been conducted to study the MBPP stack and wavy flow field characteristics with various designs [10,11]. T. Chu et al. conducted the durability test of a 10-kW MBPP fuel cell stack containing 30 cells under dynamic driving cycles and analyzed the performance degradation mechanism [12]. X. Li et al. studied the deformation behavior of the wavy flow channels with thin metallic sheet of 316 stainless steel from both experimental and simulation aspects [13]. J. Owejan et al. designed a PEMFC stack with anode straight flow channels and cathode wavy flow channels and studied the in situ water distributions with neutron radiograph [14]. T. Tsukamoto et al. simulated a full-scale MBPP fuel cell stack of 300 cm2 active area at high current densities and used the 3D model to analyze the in-plane and through-plane parameter distributions [15]. G. Zhang et al. developed a two-fluid 3D model of PEMFC to study the multi-phase and convection effects of wave-like flow channels which are symmetric between anode and cathode sides [16]. S. Saco et al. studied the scaled up PEMFC numerically and compared straight parallel, serpentine zig-zag and straight zig-zag flow channels cell with zig-zag flow field with a transient 3D numerical model to analyze the subfreezing temperature cold start operations [18]. P. Dong et al. introduced discontinuous S-shaped and crescent ribs into flow channels based on the concept of wavy flow field for optimized design and improved energy performance [19]. I. Anyanwu et al. investigated the two-phase flow in sinusoidal channel of different geometric configurations for PEMFC and analyzed the effects of key dimensions on the droplet removal in the flow channel [20]. Y. Peng et al. simulated 5-cell stacks with commercialized flow field designs, including Ballard-like straight flow field, Honda-like wavy flow field and Toyota-like 3D mesh flow field, to investigate their thermal management performance [21]. To note, the terms such as sinusoidal, zig-zag, wave-like and Sshaped flow channels in the aforementioned literatures are similar to the so called wavy flow channels in this paper with identical channel height for the entire flow field. The through-plane constructed wavy flow channels with periodically varied channel heights are beyond the scope of this paper [22,23].

最新推荐

recommend-type

新版Matlab中神经网络训练函数Newff的详细讲解-新版Matlab中神经网络训练函数Newff的使用方法.doc

PR x Q1 matrix of Q1 sample R-element input vectorsTSN x Q2 matrix of Q2 sample SN-element target vectorsSiSize of ith layer, for N-1 layers, default = [ ]. TFiTransfer function of ith layer. ...
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

2. 通过python绘制y=e-xsin(2πx)图像

可以使用matplotlib库来绘制这个函数的图像。以下是一段示例代码: ```python import numpy as np import matplotlib.pyplot as plt def func(x): return np.exp(-x) * np.sin(2 * np.pi * x) x = np.linspace(0, 5, 500) y = func(x) plt.plot(x, y) plt.xlabel('x') plt.ylabel('y') plt.title('y = e^{-x} sin(2πx)') plt.show() ``` 运行这段
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

导入numpy库,创建两个包含9个随机数的3*3的矩阵,将两个矩阵分别打印出来,计算两个数组的点积并打印出来。(random.randn()、dot()函数)

可以的,以下是代码实现: ```python import numpy as np # 创建两个包含9个随机数的3*3的矩阵 matrix1 = np.random.randn(3, 3) matrix2 = np.random.randn(3, 3) # 打印两个矩阵 print("Matrix 1:\n", matrix1) print("Matrix 2:\n", matrix2) # 计算两个数组的点积并打印出来 dot_product = np.dot(matrix1, matrix2) print("Dot product:\n", dot_product) ``` 希望
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。