遗传算法求解指派问题
时间: 2023-08-12 16:06:00 浏览: 278
遗传算法是一种自适应全局优化概率搜索算法,通过模拟生物在自然环境中的遗传和进化过程来解决问题。在求解指派问题时,遗传算法主要包括初始化、适应度评价和进化操作三个基本步骤。首先,需要设置初始种群、最大迭代次数及迭代计数器。然后,对当前种群进行适应度评价,计算每个个体的适应度。接下来,通过选择、交叉、变异、倒位等算子作用产生下一代群体。在指派问题中,考虑到可行解必须位于不同行不同列的约束限制,在遗传进化过程中,无需再进行变异操作和倒位操作。最后,根据终止条件判断是否已经找到最优解,如果是则终止算法,否则重复以上步骤直到达到最大迭代次数。通过这样的迭代过程,遗传算法可以逐步优化出较好的解来求解指派问题。<em>1</em><em>2</em><em>3</em>
#### 引用[.reference_title]
- *1* *2* *3* [【指派问题】遗传算法求解指派优化问题【含Matlab源码 2292期】](https://blog.csdn.net/weixin_63266434/article/details/129052921)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}} ] [.reference_item]
[ .reference_list ]
阅读全文