pytorch 二分类
时间: 2023-09-21 08:09:38 浏览: 96
在PyTorch中进行二分类可以使用交叉熵损失函数和Adam梯度优化器。首先,可以定义一个自定义的神经网络类,继承自nn.Module,并在其中定义网络结构。例如,在网络中可以使用nn.Linear来定义输入层和隐藏层之间的全连接层,然后使用nn.Sigmoid或者nn.ReLU等非线性激活函数。接着,在forward方法中定义网络的前向传播过程。最后,可以在predict方法中使用softmax函数将输出转换为概率,并根据阈值将概率转换为预测结果。以下是一个简单的例子:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class MyClassifier(nn.Module):
def __init__(self):
super(MyClassifier, self).__init__()
self.fc1 = nn.Linear(2, 3)
self.fc2 = nn.Linear(3, 2)
def forward(self, x):
x = self.fc1(x)
x = F.tanh(x)
x = self.fc2(x)
return x
def predict(self, x):
pred = F.softmax(self.forward(x))
ans = []
for t in pred:
if t > t<em>1</em><em>2</em><em>3</em>
#### 引用[.reference_title]
- *1* *3* [Pytorch实现二分类器](https://blog.csdn.net/lizzy05/article/details/90521909)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}} ] [.reference_item]
- *2* [PyTorch深度学习——Logistic回归(二分类问题)](https://blog.csdn.net/weixin_42603976/article/details/126171385)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}} ] [.reference_item]
[ .reference_list ]
阅读全文