设G=(V,E)是一个带权图。图中的各边的费用(权)为正数。图中的一条周游路线是包括V中的每个顶点在内的一条回路。周游路线的费用是这条路线上所有边的费用之和。旅行售货员问题是指在图G中找出费用最小的周游路线。如果找不到可行方案,则输出-1。 C语言实现,样例输入 4 1 2 30 1 3 6 1 4 4 2 3 5 2 4 10 3 4 20 样例输出 Copy 25 1 3 2 4 1
时间: 2023-11-22 08:55:50 浏览: 68
以下是C语言实现,使用了Dijkstra算法来求解最小周游路线:
```c
#include <stdio.h>
#include <stdlib.h>
#include <limits.h>
#define MAX_VERTICES 1000
typedef struct {
int vertex;
int weight;
} Edge;
int num_vertices, num_edges;
Edge edges[MAX_VERTICES * (MAX_VERTICES - 1) / 2];
int adj_matrix[MAX_VERTICES][MAX_VERTICES];
int dijkstra(int start_vertex) {
int visited[MAX_VERTICES] = {0};
int dist[MAX_VERTICES];
int prev[MAX_VERTICES];
int i, j, u, min_dist;
for (i = 0; i < num_vertices; i++) {
dist[i] = INT_MAX;
prev[i] = -1;
}
dist[start_vertex] = 0;
for (i = 0; i < num_vertices - 1; i++) {
min_dist = INT_MAX;
for (j = 0; j < num_vertices; j++) {
if (!visited[j] && dist[j] < min_dist) {
u = j;
min_dist = dist[j];
}
}
visited[u] = 1;
for (j = 0; j < num_vertices; j++) {
if (!visited[j] && adj_matrix[u][j] != -1) {
if (dist[u] + adj_matrix[u][j] < dist[j]) {
dist[j] = dist[u] + adj_matrix[u][j];
prev[j] = u;
}
}
}
}
min_dist = 0;
for (i = 0; i < num_vertices; i++) {
if (dist[i] == INT_MAX) {
return -1;
}
min_dist += dist[i];
}
return min_dist;
}
int compare_edges(const void *a, const void *b) {
Edge *edge_a = (Edge *)a;
Edge *edge_b = (Edge *)b;
return edge_a->weight - edge_b->weight;
}
int find(int *parent, int vertex) {
if (parent[vertex] == -1) {
return vertex;
}
return find(parent, parent[vertex]);
}
void union_sets(int *parent, int x, int y) {
int x_root = find(parent, x);
int y_root = find(parent, y);
parent[x_root] = y_root;
}
int kruskal() {
Edge result[MAX_VERTICES];
int parent[MAX_VERTICES];
int i, j, count;
qsort(edges, num_edges, sizeof(Edge), compare_edges);
for (i = 0; i < num_vertices; i++) {
parent[i] = -1;
}
count = 0;
for (i = 0; i < num_edges; i++) {
Edge edge = edges[i];
int x = find(parent, edge.vertex);
int y = find(parent, (edge.vertex + 1) % num_vertices);
if (x != y) {
result[count++] = edge;
union_sets(parent, x, y);
}
}
if (count != num_vertices) {
return -1;
}
int min_dist = 0;
for (i = 0; i < count; i++) {
min_dist += result[i].weight;
}
return min_dist;
}
int main() {
int i, j;
scanf("%d %d", &num_vertices, &num_edges);
for (i = 0; i < num_vertices; i++) {
for (j = 0; j < num_vertices; j++) {
adj_matrix[i][j] = -1;
}
}
for (i = 0; i < num_edges; i++) {
int u, v, w;
scanf("%d %d %d", &u, &v, &w);
u--;
v--;
edges[i].vertex = u;
edges[i].weight = w;
adj_matrix[u][v] = w;
adj_matrix[v][u] = w;
}
int dist = dijkstra(0);
if (dist == -1) {
printf("-1\n");
return 0;
}
int min_dist = kruskal();
if (min_dist == -1 || min_dist > dist) {
printf("-1\n");
} else {
printf("%d\n", min_dist);
int parent[MAX_VERTICES];
for (i = 0; i < num_vertices; i++) {
parent[i] = -1;
}
for (i = 0; i < num_edges; i++) {
int u = edges[i].vertex;
int v = (edges[i].vertex + 1) % num_vertices;
int x = find(parent, u);
int y = find(parent, v);
if (x != y) {
printf("%d %d ", u + 1, v + 1);
union_sets(parent, x, y);
}
}
printf("%d\n", 1);
}
return 0;
}
```
这个实现包括了两种算法:Dijkstra算法和Kruskal算法。首先使用Dijkstra算法来求出任意两个点之间的最短路径。如果存在无法到达的点,则整个图不连通,直接输出-1。否则,使用Kruskal算法来求出最小生成树,并判断其是否为最小周游路线。如果最小生成树不是最小周游路线,则输出-1;否则,输出最小周游路线的长度和顶点的遍历顺序。
阅读全文