在R语言中出现Detected Python configuration:
时间: 2024-03-27 17:36:58 浏览: 140
Detected Python configuration 是指R语言检测到了Python的配置信息。这通常发生在使用R中的一些扩展包需要调用Python代码时。R语言需要知道Python的位置和版本信息以确保正确地调用Python代码。
如果你看到了这个提示,通常意味着你需要安装Python并将其添加到你的系统路径中。你可以通过在R中运行以下命令来查看Python的位置和版本信息:
```
library(reticulate)
py_config()
```
这将返回一个包含Python版本和位置信息的列表。如果你没有安装Python或者Python没有被正确地配置,你将会看到错误提示。
相关问题
SCM provider autodetection failed. Please use "sonar.scm.provider" to define SCM of your project, or disable the SCM Sensor in the project settings. Your code is analyzed as compatible with python 2 and 3 by default. This will prevent the detection of issues specific to python 2 or python 3. You can get a more precise analysis by setting a python version in your configuration via the parameter "sonar.python.version" There are problems with file encoding in the source code. Please check the scanner logs for more details. 24 unanalyzed C files were detected in this project during the last analysis. C cannot be analyzed with your current SonarQube edition. Please consider upgrading to Developer Edition to find Bugs, Code Smells, Vulnerabilities and Security Hotspots in this file. 这些是什么意思
这些是来自 SonarQube 静态代码分析工具的警告和建议。我将逐个解释它们的含义:
1. "SCM provider autodetection failed. Please use "sonar.scm.provider" to define SCM of your project, or disable the SCM Sensor in the project settings."
这表示 SonarQube 无法自动检测到你的项目的源代码管理(SCM)提供者。你需要手动设置 "sonar.scm.provider" 参数来定义你的项目的 SCM,或在项目设置中禁用 SCM 传感器。
2. "Your code is analyzed as compatible with python 2 and 3 by default. This will prevent the detection of issues specific to python 2 or python 3. You can get a more precise analysis by setting a python version in your configuration via the parameter "sonar.python.version"."
这表示默认情况下,你的代码被分析为与 Python 2 和 3 兼容。这将阻止检测特定于 Python 2 或 Python 3 的问题。你可以通过在配置中设置 Python 版本参数 "sonar.python.version" 来获得更精确的分析。
3. "There are problems with file encoding in the source code. Please check the scanner logs for more details."
这表示源代码中存在文件编码问题。请检查扫描器日志以获取更多详细信息。
4. "24 unanalyzed C files were detected in this project during the last analysis. C cannot be analyzed with your current SonarQube edition. Please consider upgrading to Developer Edition to find Bugs, Code Smells, Vulnerabilities and Security Hotspots in this file."
这表示在最近的分析中检测到了 24 个未分析的 C 文件。你当前使用的 SonarQube 版本无法分析 C 语言。请考虑升级到 Developer Edition,以便在该文件中查找错误、代码异味、漏洞和安全热点。
希望这些解释对你有所帮助!如果你需要进一步的解释或有其他问题,请随时提问。
DWA算法python实现
### 动态窗口法(DWA)简介
动态窗口法(DWA)是一种高效的局部路径规划算法,特别适合于动态环境中移动机器人的导航需求。该方法通过计算一系列可能的速度组合来预测未来轨迹,并评估这些轨迹的安全性和目标接近程度,从而选择最优动作[^2]。
### DWA算法的核心要素
- **线速度范围** 和 **角速度范围** 的定义决定了机器人可以采取的动作集合。
- 对每一个可行的速度组合,模拟一段时间内的运动并检查是否会碰撞障碍物。
- 计算各条候选路径的成本函数值,通常包括距离终点的距离、前进方向偏差等因素。
- 选取成本最低的一组参数作为最终控制指令发送给执行器。
### Python实现示例代码
下面是一个简化版的DWA算法Python实现:
```python
import numpy as np
from math import pow, sqrt
def dwa_control(x, config, goal, ob):
"""
Dynamic Window Approach control.
:param x: Robot state vector [x(m), y(m), yaw(rad), v(m/s), omega(rad/s)].
:param config: Configuration parameters of the robot and environment.
:param goal: Goal position [x(m), y(m)].
:param ob: Obstacle positions [[x1(m), y1(m)], ...].
"""
dw = calc_dynamic_window(x, config)
u, trajectory = calc_final_input(x, dw, config, goal, ob)
return u, trajectory
def motion(x, u, dt):
""" Motion Model """
# Update vehicle kinematics based on input velocity (u[0]) and angular velocity (u[1])
x[2] += u[1] * dt
x[0] += u[0] * math.cos(x[2]) * dt
x[1] += u[0] * math.sin(x[2]) * dt
x[3] = u[0]
x[4] = u[1]
return x
def predict_trajectory(x_init, v, o, config):
"""
Predicts a new trajectory given initial conditions and controls.
:param x_init: Initial condition [x(m), y(m), yaw(rad), v(m/s), omega(rad/s)]
:param v: Velocity command (m/s).
:param o: Angular velocity command (rad/s).
:param config: Configuration object containing simulation settings.
"""
x_pred = np.array(x_init)
traj = np.array(x_init)
time = 0
while time <= config.predict_time:
x_pred = motion(x_pred, [v, o], config.dt)
traj = np.vstack((traj, x_pred))
time += config.dt
return traj
def calc_obstacle_cost(traj, ob, config):
"""
Calculates cost associated with proximity to obstacles along predicted path.
:param traj: Trajectory array consisting of multiple states over prediction horizon.
:param ob: List of obstacle coordinates.
:param config: Simulation configuration details.
"""
ox = ob[:, 0]
oy = ob[:, 1]
dx = traj[:, 0] - ox[:, None]
dy = traj[:, 1] - oy[:, None]
r = np.hypot(dx, dy)
if not any(r <= config.robot_radius):
return 0.0 # No collision detected
min_r = min(r)
return 1.0 / min_r # Higher penalty when closer to an obstacle
def calc_to_goal_cost(traj, goal, config):
"""
Computes cost related to distance from end point of trajectory towards target location.
:param traj: Array representing sequence of poses during planning interval.
:param goal: Desired destination coordinate pair.
:param config: System setup information including dimensions etc..
"""
dx = goal[0] - traj[-1, 0]
dy = goal[1] -1, 2]
error_angle = normalize_angle(error_angle)
dist_to_line = abs(-error_angle * config.robot_length / 2.0)
heading_diff = abs(normalize_angle(math.atan2(goal[1]-config.start_pose[1],
goal[0]-config.start_pose[0])-traj[-1][2]))
return dist_to_line + heading_diff
def normalize_angle(angle):
""" Normalize angle between [-pi, pi]."""
while angle > np.pi:
angle -= 2*np.pi
while angle < -np.pi:
angle += 2*np.pi
return angle
def calc_final_input(x, dw, config, goal, ob):
"""
Select best action according to evaluation criteria defined by costs functions.
:param x: Current pose estimate [x(m), y(m), theta(rad), linear vel.(m/s), ang.vel.(rad/s)].
:param dw: Discretized dynamic window bounds for admissible velocities.
:param config: Environment & agent specifications used throughout computations.
:param goal: Target waypoint specified in world frame reference system.
:param ob: Collection of static or moving objects within vicinity.
"""
max_speed = float('-inf')
best_u = [0.0, 0.0]
best_traj = []
for v in np.arange(dw[0], dw[1], config.v_reso):
for w in np.arange(dw[2], dw[3], config.yawrate_reso):
temp_traj = predict_trajectory(x, v, w, config)
# Calculate three types of penalties/costs
to_goal_cost = calc_to_goal_cost(temp_traj, goal, config)
speed_cost = config.speed_weight * v / config.max_speed
obs_cost = calc_obstacle_cost(temp_traj, ob, config)
final_cost = to_goal_cost + speed_cost + obs_cost
if final_cost >= max_speed:
max_speed = final_cost
best_u = [v, w]
best_traj = temp_traj
return best_u, best_traj
def calc_dynamic_window(x, config):
"""
Defines feasible region where potential solutions lie inside limits imposed both physically and logically.
:param x: Present status report about mobile platform's spatial attributes plus its instantaneous rates of change.
:param config: Data structure holding all necessary constants required across various stages of computation process.
"""
Vs = [config.min_speed, config.max_speed,
-config.max_yawrate, config.max_yawrate]
Vd = [(x[3] - config.max_accel * config.dt),
(x[3] + config.max_accel * config.dt),
(x[4] - config.max_dyawrate * config.dt),
(x[4] + config.max_dyawrate * config.dt)]
dw = [
max(Vs[0], Vd[0]), min(Vs[1], Vd[1]),
max(Vs[2], Vd[2]), min(Vs[3], Vd[3])
]
return dw
```
此段程序实现了基本的DWA逻辑框架,可以根据具体应用场景调整配置项以及优化性能指标。注意这里省略了一些辅助性的子功能模块,在实际开发过程中还需要完善边界条件处理等内容。
阅读全文