矩阵束算法matlab程序
时间: 2023-06-13 13:03:58 浏览: 377
矩阵束(Matrix Bundle)算法是一种基于矩阵的优化算法,用于求解非线性约束优化问题。下面是一个简单的 Matlab 程序,用于演示如何使用矩阵束算法求解一个非线性约束优化问题。
```matlab
function [x,fval,exitflag,output] = matrix_bundle(fun,x0,options)
% Define the default options
defaultopt = struct('MaxIter',1000,'TolFun',1e-6,'TolX',1e-6);
if nargin < 3
options = [];
end
options = merge_options(defaultopt,options);
% Set up the initial variables
x = x0;
n = length(x0);
B = eye(n);
f = feval(fun,x);
gradf = grad(fun,x);
fx = f;
gx = gradf;
G = gx;
% Define the stopping criteria
stopcrit = 0;
% Define the iteration counter
iter = 0;
% Start the main loop
while ~stopcrit && iter < options.MaxIter
% Compute the search direction
[s,c] = compute_direction(B,G);
% Compute the step length
alpha = line_search(fun,x,s,c);
% Update the variables
xnew = x + alpha*s;
fnew = feval(fun,xnew);
gradfnew = grad(fun,xnew);
Bnew = update_matrix_bundle(B,G,gradfnew-gx,s,c);
% Compute the stopping criteria
stopcrit = stopping_criteria(x,xnew,f,fnew,gradf,gradfnew,options);
% Update the variables
x = xnew;
f = fnew;
gradf = gradfnew;
B = Bnew;
fx(end+1) = f;
gx = gradf;
G = [G,gx];
iter = iter + 1;
end
% Set the output variables
fval = f;
exitflag = stopcrit;
output.iterations = iter;
output.funcCount = iter;
output.algorithm = 'Matrix Bundle';
output.message = '';
% Plot the convergence curve
figure;
semilogy(1:length(fx),fx-fval,'-o');
xlabel('Iteration');
ylabel('Objective Function Error');
title('Convergence Curve');
grid on;
end
% Compute the search direction
function [s,c] = compute_direction(B,G)
[U,S,V] = svd(B);
d = zeros(size(S,1),1);
for i = 1:size(S,1)
d(i) = max(0,S(i,i));
end
c = U'*G;
s = V*diag(d)*c;
end
% Compute the step length
function alpha = line_search(fun,x,s,c)
alpha = 1;
sigma = 0.1;
rho = 0.5;
fx = feval(fun,x);
while feval(fun,x+alpha*s) > fx + sigma*alpha*c'*s
alpha = rho*alpha;
end
end
% Update the matrix bundle
function Bnew = update_matrix_bundle(B,G,delta,s,c)
[U,S,V] = svd(B);
d = zeros(size(S,1),1);
for i = 1:size(S,1)
d(i) = max(0,S(i,i));
end
delta_d = U'*(delta-G);
for i = 1:size(d,1)
if d(i) ~= 0
delta_d(i) = delta_d(i)/d(i);
end
end
d = d + delta_d;
for i = 1:size(d,1)
if d(i) < 0
d(i) = 0;
end
end
Bnew = U*diag(d)*V';
end
% Compute the stopping criteria
function stopcrit = stopping_criteria(x,xnew,f,fnew,gradf,gradfnew,options)
stopcrit = 0;
if norm(xnew-x) < options.TolX && abs(fnew-f) < options.TolFun && norm(gradfnew-gradf) < options.TolFun
stopcrit = 1;
end
end
% Merge two structures
function s = merge_options(s1,s2)
s = s1;
if ~isempty(s2)
names = fieldnames(s2);
for i = 1:length(names)
s.(names{i}) = s2.(names{i});
end
end
end
% Compute the gradient of the objective function
function gradf = grad(fun,x)
h = 1e-6;
gradf = zeros(size(x));
for i = 1:length(x)
x1 = x;
x1(i) = x(i) + h;
f1 = feval(fun,x1);
x2 = x;
x2(i) = x(i) - h;
f2 = feval(fun,x2);
gradf(i) = (f1 - f2)/(2*h);
end
end
```
该程序包含以下函数:
- `matrix_bundle`:主函数,用于实现矩阵束算法。
- `compute_direction`:计算矩阵束算法中的搜索方向。
- `line_search`:计算矩阵束算法中的步长。
- `update_matrix_bundle`:更新矩阵束算法中的矩阵束。
- `stopping_criteria`:计算矩阵束算法的停止准则。
- `merge_options`:合并两个结构体。
- `grad`:计算目标函数的梯度。
为了使用该程序,需要定义目标函数,并提供初始点和一些选项(如最大迭代次数和容差)。例如,假设我们要求解以下非线性约束优化问题:
```
min x1^2 + 2*x2^2 - 0.3*cos(3*pi*x1) - 0.4*cos(4*pi*x2) + 0.7
s.t. x1 + x2 >= 1
x1 >= 0
x2 >= 0
```
可以使用以下代码来调用 `matrix_bundle` 函数:
```matlab
% Define the objective function
fun = @(x) x(1)^2 + 2*x(2)^2 - 0.3*cos(3*pi*x(1)) - 0.4*cos(4*pi*x(2)) + 0.7;
% Define the initial point
x0 = [0.5;0.5];
% Define the options
options.MaxIter = 1000;
options.TolFun = 1e-6;
options.TolX = 1e-6;
% Call the matrix_bundle function
[x,fval,exitflag,output] = matrix_bundle(fun,x0,options);
```
该代码将返回最优解 `x`,最优函数值 `fval`,退出标志 `exitflag` 和输出信息 `output`。此外,该程序还会绘制收敛曲线。
阅读全文