使用sklearn,构建联邦逻辑回归模型代码
时间: 2024-05-05 17:21:52 浏览: 136
联邦逻辑回归模型是一种机器学习模型,用于在多个数据源上训练模型,而不将数据传输到集中式服务器。在本例中,我们将使用scikit-learn库来构建联邦逻辑回归模型。代码如下:
```python
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
import numpy as np
# 创建两个数据集
X1, y1 = make_classification(n_samples=1000, n_features=10, n_informative=5, n_classes=2, random_state=1)
X2, y2 = make_classification(n_samples=1000, n_features=10, n_informative=5, n_classes=2, random_state=2)
# 将两个数据集分别分成训练集和测试集
X1_train, X1_test, y1_train, y1_test = train_test_split(X1, y1, test_size=0.2, random_state=1)
X2_train, X2_test, y2_train, y2_test = train_test_split(X2, y2, test_size=0.2, random_state=2)
# 定义联邦逻辑回归模型
class FedLogisticRegression:
def __init__(self, num_clients, alpha=0.01, max_iter=100):
self.num_clients = num_clients
self.alpha = alpha
self.max_iter = max_iter
self.models = [LogisticRegression() for _ in range(num_clients)]
def fit(self, X, y):
num_samples = len(X)
chunk_size = num_samples // self.num_clients
for i in range(self.max_iter):
# 每个客户端训练自己的模型
for j in range(self.num_clients):
X_chunk = X[j*chunk_size:(j+1)*chunk_size]
y_chunk = y[j*chunk_size:(j+1)*chunk_size]
self.models[j].fit(X_chunk, y_chunk)
# 合并所有模型的权重
weights = np.array([model.coef_ for model in self.models])
avg_weights = np.mean(weights, axis=0)
# 更新所有模型的权重
for model in self.models:
model.coef_ = avg_weights
def predict(self, X):
preds = []
for model in self.models:
preds.append(model.predict(X))
return np.mean(preds, axis=0)
# 训练联邦逻辑回归模型
fed_lr = FedLogisticRegression(num_clients=2)
fed_lr.fit([X1_train, X2_train], [y1_train, y2_train])
# 在测试集上评估模型性能
X_test = np.concatenate((X1_test, X2_test))
y_test = np.concatenate((y1_test, y2_test))
y_pred = fed_lr.predict(X_test)
acc = accuracy_score(y_test, y_pred)
print("Accuracy:", acc)
```
在上面的代码中,我们首先创建了两个不同的数据集。然后,我们将这些数据集分别分成训练集和测试集,并定义了一个`FedLogisticRegression`类来实现联邦逻辑回归模型。该模型将训练数据分配给多个客户端,每个客户端训练自己的逻辑回归模型。然后,所有客户端的模型权重被平均,并用于更新所有模型的权重。最后,我们在测试集上评估了模型的性能。
阅读全文