target pb on有什么用

时间: 2024-05-25 21:13:36 浏览: 10
"target pb on" 是一个比较模糊的问题,不太清楚你具体想问的是什么。如果你能提供更多的上下文和细节,我可以更好地回答你的问题。 通常情况下,“target”表示目标,“pb”表示Protocol Buffer(一种数据交换格式)。因此,“target pb on”可能是指在某个目标/设备上使用Protocol Buffer格式进行数据交换或通信。这种方式可以使不同的应用程序或系统之间更容易地共享数据,因为它们可以使用相同的数据格式进行交换,而无需担心不兼容的问题。
相关问题

使用grpc通信程序,并使用cmake进行编译

好的,以下是一个简单的 C++ gRPC 通信程序,并使用 CMake 进行编译: 首先,需要安装 gRPC 和 Protobuf。 接着,创建一个名为 `hello.proto` 的 Protobuf 文件,内容如下: ```protobuf syntax = "proto3"; package helloworld; service Greeter { rpc SayHello (HelloRequest) returns (HelloReply) {} } message HelloRequest { string name = 1; } message HelloReply { string message = 1; } ``` 然后,在命令行中进入到包含 `hello.proto` 文件的目录,并执行以下命令: ```bash $ grpc_cpp_plugin --cpp_out=. --grpc_out=. --plugin=protoc-gen-grpc=`which grpc_cpp_plugin` hello.proto ``` 该命令将生成 `hello.grpc.pb.h` 和 `hello.grpc.pb.cc` 文件。 接着,创建一个名为 `server.cpp` 的服务器端代码,内容如下: ```cpp #include <iostream> #include <memory> #include <string> #include <grpc++/grpc++.h> #include "hello.grpc.pb.h" using grpc::Server; using grpc::ServerBuilder; using grpc::ServerContext; using grpc::Status; using helloworld::Greeter; using helloworld::HelloRequest; using helloworld::HelloReply; // 实现 Greeter 服务类 class GreeterServiceImpl final : public Greeter::Service { Status SayHello(ServerContext* context, const HelloRequest* request, HelloReply* reply) override { std::string prefix("Hello "); reply->set_message(prefix + request->name()); return Status::OK; } }; // 启动服务器 void RunServer() { std::string server_address("0.0.0.0:50051"); GreeterServiceImpl service; // 构建服务器 ServerBuilder builder; builder.AddListeningPort(server_address, grpc::InsecureServerCredentials()); builder.RegisterService(&service); std::unique_ptr<Server> server(builder.BuildAndStart()); std::cout << "Server listening on " << server_address << std::endl; // 等待服务器关闭 server->Wait(); } int main(int argc, char** argv) { RunServer(); return 0; } ``` 该代码将创建一个 `GreeterServiceImpl` 类,实现 `Greeter` 服务类,然后启动一个 gRPC 服务器,监听在 `0.0.0.0:50051` 地址。 接着,创建一个名为 `client.cpp` 的客户端代码,内容如下: ```cpp #include <iostream> #include <memory> #include <string> #include <grpc++/grpc++.h> #include "hello.grpc.pb.h" using grpc::Channel; using grpc::ClientContext; using grpc::Status; using helloworld::Greeter; using helloworld::HelloRequest; using helloworld::HelloReply; class GreeterClient { public: GreeterClient(std::shared_ptr<Channel> channel) : stub_(Greeter::NewStub(channel)) {} std::string SayHello(const std::string& user) { HelloRequest request; request.set_name(user); HelloReply reply; ClientContext context; // 调用远程服务 Status status = stub_->SayHello(&context, request, &reply); if (status.ok()) { return reply.message(); } else { return "RPC failed"; } } private: std::unique_ptr<Greeter::Stub> stub_; }; int main(int argc, char** argv) { GreeterClient greeter(grpc::CreateChannel( "localhost:50051", grpc::InsecureChannelCredentials())); std::string user("world"); std::string reply = greeter.SayHello(user); std::cout << "Greeter received: " << reply << std::endl; return 0; } ``` 该代码将创建一个 `GreeterClient` 类,用于调用远程服务。它将连接到 `localhost:50051` 地址,并调用 `SayHello` 方法,将 `world` 作为参数传递给远程服务。 最后,创建一个名为 `CMakeLists.txt` 的 CMake 文件,内容如下: ```cmake cmake_minimum_required(VERSION 3.0.0) project(grpc-example VERSION 0.1.0) set(CMAKE_CXX_STANDARD 11) add_executable(server server.cpp hello.grpc.pb.cc hello.pb.cc) add_executable(client client.cpp hello.grpc.pb.cc hello.pb.cc) find_package(Protobuf REQUIRED) find_package(gRPC REQUIRED) target_include_directories(server PUBLIC ${Protobuf_INCLUDE_DIRS}) target_link_libraries(server ${Protobuf_LIBRARIES} gRPC::grpc++) target_include_directories(client PUBLIC ${Protobuf_INCLUDE_DIRS}) target_link_libraries(client ${Protobuf_LIBRARIES} gRPC::grpc++) ``` 该文件将编译 `server.cpp` 和 `client.cpp`,并链接 Protobuf 和 gRPC 库。 在命令行中进入到包含 `CMakeLists.txt` 文件的目录,并执行以下命令: ```bash $ mkdir build $ cd build $ cmake .. $ make ``` 该命令将编译并链接代码,生成 `server` 和 `client` 可执行文件。 现在,可以在命令行中运行 `./server` 启动服务器,然后在另一个终端窗口中运行 `./client` 调用远程服务。

facenet eval_LFW

回答: 在使用facenet进行LFW数据集的评估时,首先需要修改facenet.py文件中的model_path参数和backbone model_path,将其设置为我们训练好的模型的路径。同时,我们需要保持backbone为mobilenet的提取神经网络。\[1\]接下来,我们需要使用转换后的eval graph,将参数和结构固化。可以使用facenet自带的freeze_graph.py脚本来完成这一步骤。由于之前导出的是eval graph,所以导致输出的facenet.pb只有一个输入节点input shape=(1, 64, 64, 3)和一个输出节点output shape=(1, 512)。\[2\]最后,我们可以使用src/validate_on_lfw.py文件作为入口,同时传入两个参数。第一个参数是我们已经预处理(人脸检测和人脸对齐)后的数据集的路径,第二个参数是下载的模型的路径。通过pairs.txt文件导入待对比的图片路径,即可进行facenet的LFW评估。\[3\] #### 引用[.reference_title] - *1* [使用pyTorch搭建自己的facenet](https://blog.csdn.net/jgmgtdp/article/details/129207611)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [GitHub - jiangxiluning/facenet_mtcnn_to_mobile: convert facenet and mtcnn models from tensorflow to ...](https://blog.csdn.net/weixin_32512261/article/details/114706487)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [tensorflow入门教程(四十)FaceNet源码分析之validate_on_lfw(上)](https://blog.csdn.net/rookie_wei/article/details/90048979)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

相关推荐

zip
旅游社交小程序功能有管理员和用户。管理员有个人中心,用户管理,每日签到管理,景点推荐管理,景点分类管理,防疫查询管理,美食推荐管理,酒店推荐管理,周边推荐管理,分享圈管理,我的收藏管理,系统管理。用户可以在微信小程序上注册登录,进行每日签到,防疫查询,可以在分享圈里面进行分享自己想要分享的内容,查看和收藏景点以及美食的推荐等操作。因而具有一定的实用性。 本站后台采用Java的SSM框架进行后台管理开发,可以在浏览器上登录进行后台数据方面的管理,MySQL作为本地数据库,微信小程序用到了微信开发者工具,充分保证系统的稳定性。系统具有界面清晰、操作简单,功能齐全的特点,使得旅游社交小程序管理工作系统化、规范化。 管理员可以管理用户信息,可以对用户信息添加修改删除。管理员可以对景点推荐信息进行添加修改删除操作。管理员可以对分享圈信息进行添加,修改,删除操作。管理员可以对美食推荐信息进行添加,修改,删除操作。管理员可以对酒店推荐信息进行添加,修改,删除操作。管理员可以对周边推荐信息进行添加,修改,删除操作。 小程序用户是需要注册才可以进行登录的,登录后在首页可以查看相关信息,并且下面导航可以点击到其他功能模块。在小程序里点击我的,会出现关于我的界面,在这里可以修改个人信息,以及可以点击其他功能模块。用户想要把一些信息分享到分享圈的时候,可以点击新增,然后输入自己想要分享的信息就可以进行分享圈的操作。用户可以在景点推荐里面进行收藏和评论等操作。用户可以在美食推荐模块搜索和查看美食推荐的相关信息。

最新推荐

recommend-type

a标签的target链接指向iframe的方法

主要介绍了a标签的target链接指向iframe的方法,切记不是用Id来做指向的目标而是name,需要的朋友可以参考下
recommend-type

simulink的xPCTarget模块介绍-xPC Target模块介绍.doc

Simulink 的 xPCTarget 模块介绍 xPCTarget 模块是一个功能强大且流行的模块,旨在将 Simulink 模型转换为实时应用程序,能够在 PC 机上运行,从而实现快速原型和硬件在回路测试。下面对 xPCTarget 模块的功能和...
recommend-type

用python进行视频剪辑

一、目标 python,利用moviepy和pydub将一段视频进行区间切割 二、源码 import os from moviepy.video.io.VideoFileClip import VideoFileClip from pydub import ... :param target_file: 生成的目标视频路径,m
recommend-type

数据结构课程设计:模块化比较多种排序算法

本篇文档是关于数据结构课程设计中的一个项目,名为“排序算法比较”。学生针对专业班级的课程作业,选择对不同排序算法进行比较和实现。以下是主要内容的详细解析: 1. **设计题目**:该课程设计的核心任务是研究和实现几种常见的排序算法,如直接插入排序和冒泡排序,并通过模块化编程的方法来组织代码,提高代码的可读性和复用性。 2. **运行环境**:学生在Windows操作系统下,利用Microsoft Visual C++ 6.0开发环境进行编程。这表明他们将利用C语言进行算法设计,并且这个环境支持高效的性能测试和调试。 3. **算法设计思想**:采用模块化编程策略,将排序算法拆分为独立的子程序,比如`direct`和`bubble_sort`,分别处理直接插入排序和冒泡排序。每个子程序根据特定的数据结构和算法逻辑进行实现。整体上,算法设计强调的是功能的分块和预想功能的顺序组合。 4. **流程图**:文档包含流程图,可能展示了程序设计的步骤、数据流以及各部分之间的交互,有助于理解算法执行的逻辑路径。 5. **算法设计分析**:模块化设计使得程序结构清晰,每个子程序仅在被调用时运行,节省了系统资源,提高了效率。此外,这种设计方法增强了程序的扩展性,方便后续的修改和维护。 6. **源代码示例**:提供了两个排序函数的代码片段,一个是`direct`函数实现直接插入排序,另一个是`bubble_sort`函数实现冒泡排序。这些函数的实现展示了如何根据算法原理操作数组元素,如交换元素位置或寻找合适的位置插入。 总结来说,这个课程设计要求学生实际应用数据结构知识,掌握并实现两种基础排序算法,同时通过模块化编程的方式展示算法的实现过程,提升他们的编程技巧和算法理解能力。通过这种方式,学生可以深入理解排序算法的工作原理,同时学会如何优化程序结构,提高程序的性能和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

STM32单片机小车智能巡逻车设计与实现:打造智能巡逻车,开启小车新时代

![stm32单片机小车](https://img-blog.csdnimg.cn/direct/c16e9788716a4704af8ec37f1276c4dc.png) # 1. STM32单片机简介及基础** STM32单片机是意法半导体公司推出的基于ARM Cortex-M内核的高性能微控制器系列。它具有低功耗、高性能、丰富的外设资源等特点,广泛应用于工业控制、物联网、汽车电子等领域。 STM32单片机的基础架构包括CPU内核、存储器、外设接口和时钟系统。其中,CPU内核负责执行指令,存储器用于存储程序和数据,外设接口提供与外部设备的连接,时钟系统为单片机提供稳定的时钟信号。 S
recommend-type

devc++如何监视

Dev-C++ 是一个基于 Mingw-w64 的免费 C++ 编程环境,主要用于 Windows 平台。如果你想监视程序的运行情况,比如查看内存使用、CPU 使用率、日志输出等,Dev-C++ 本身并不直接提供监视工具,但它可以在编写代码时结合第三方工具来实现。 1. **Task Manager**:Windows 自带的任务管理器可以用来实时监控进程资源使用,包括 CPU 占用、内存使用等。只需打开任务管理器(Ctrl+Shift+Esc 或右键点击任务栏),然后找到你的程序即可。 2. **Visual Studio** 或 **Code::Blocks**:如果你习惯使用更专业的
recommend-type

哈夫曼树实现文件压缩解压程序分析

"该文档是关于数据结构课程设计的一个项目分析,主要关注使用哈夫曼树实现文件的压缩和解压缩。项目旨在开发一个实用的压缩程序系统,包含两个可执行文件,分别适用于DOS和Windows操作系统。设计目标中强调了软件的性能特点,如高效压缩、二级缓冲技术、大文件支持以及友好的用户界面。此外,文档还概述了程序的主要函数及其功能,包括哈夫曼编码、索引编码和解码等关键操作。" 在数据结构课程设计中,哈夫曼树是一种重要的数据结构,常用于数据压缩。哈夫曼树,也称为最优二叉树,是一种带权重的二叉树,它的构造原则是:树中任一非叶节点的权值等于其左子树和右子树的权值之和,且所有叶节点都在同一层上。在这个文件压缩程序中,哈夫曼树被用来生成针对文件中字符的最优编码,以达到高效的压缩效果。 1. 压缩过程: - 首先,程序统计文件中每个字符出现的频率,构建哈夫曼树。频率高的字符对应较短的编码,反之则对应较长的编码。这样可以使得频繁出现的字符用较少的位来表示,从而降低存储空间。 - 接着,使用哈夫曼编码将原始文件中的字符转换为对应的编码序列,完成压缩。 2. 解压缩过程: - 在解压缩时,程序需要重建哈夫曼树,并根据编码序列还原出原来的字符序列。这涉及到索引编码和解码,通过递归函数如`indexSearch`和`makeIndex`实现。 - 为了提高效率,程序采用了二级缓冲技术,它能减少磁盘I/O次数,提高读写速度。 3. 软件架构: - 项目包含了两个可执行文件,`DosHfm.exe`适用于DOS系统,体积小巧,运行速度快;而`WinHfm.exe`则为Windows环境设计,提供了更友好的图形界面。 - 程序支持最大4GB的文件压缩,这是Fat32文件系统的限制。 4. 性能特点: - 除了基本的压缩和解压缩功能外,软件还提供了一些额外的特性,如显示压缩进度、文件一致性检查等。 - 哈夫曼编码的使用提高了压缩率,而二级缓冲技术使压缩速度提升了75%以上。 这个项目不仅展示了数据结构在实际问题中的应用,还体现了软件工程的实践,包括需求分析、概要设计以及关键算法的实现。通过这样的课程设计,学生可以深入理解数据结构和算法的重要性,并掌握实际编程技能。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

STM32单片机小车硬件优化策略:优化硬件设计,让小车更稳定更可靠

![STM32单片机小车硬件优化策略:优化硬件设计,让小车更稳定更可靠](https://static.mianbaoban-assets.eet-china.com/xinyu-images/MBXY-CR-c138c506ec1b17b643c23c4884fd9882.png) # 1. STM32单片机小车硬件优化策略概述 STM32单片机小车在实际应用中,硬件优化至关重要。本文将深入探讨STM32单片机小车硬件优化策略,从硬件设计、元器件选型、安装、调试、可靠性到维护等方面进行全面的分析,旨在帮助开发者提升小车的性能、稳定性和使用寿命。 # 2. 硬件设计优化 硬件设计优化是S