python实现分治法矩阵乘法
时间: 2023-07-07 14:06:52 浏览: 104
分治法矩阵乘法是一种有效的算法,可以将两个矩阵相乘的时间复杂度从 $O(n^3)$ 降低到 $O(n^{log_2 7})$。下面是 Python 实现:
```python
def matrix_multiply(A, B):
n = len(A)
C = [[0 for j in range(n)] for i in range(n)]
if n == 1:
C[0][0] = A[0][0] * B[0][0]
else:
# 将矩阵分成四个子矩阵
A11, A12, A21, A22 = partition_matrix(A)
B11, B12, B21, B22 = partition_matrix(B)
# 递归计算子矩阵的乘积
C11 = add_matrix(matrix_multiply(A11, B11), matrix_multiply(A12, B21))
C12 = add_matrix(matrix_multiply(A11, B12), matrix_multiply(A12, B22))
C21 = add_matrix(matrix_multiply(A21, B11), matrix_multiply(A22, B21))
C22 = add_matrix(matrix_multiply(A21, B12), matrix_multiply(A22, B22))
# 组合子矩阵的乘积
for i in range(n // 2):
for j in range(n // 2):
C[i][j] = C11[i][j]
C[i][j + n // 2] = C12[i][j]
C[i + n // 2][j] = C21[i][j]
C[i + n // 2][j + n // 2] = C22[i][j]
return C
def partition_matrix(A):
n = len(A)
A11, A12, A21, A22 = [], [], [], []
for i in range(n // 2):
A11.append(A[i][:n // 2])
A12.append(A[i][n // 2:])
A21.append(A[i + n // 2][:n // 2])
A22.append(A[i + n // 2][n // 2:])
return A11, A12, A21, A22
def add_matrix(A, B):
n = len(A)
C = [[0 for j in range(n)] for i in range(n)]
for i in range(n):
for j in range(n):
C[i][j] = A[i][j] + B[i][j]
return C
```
这里的 `matrix_multiply` 函数用于计算两个矩阵的乘积,`partition_matrix` 函数将一个矩阵分成四个子矩阵,`add_matrix` 函数用于将两个矩阵相加。注意到如果矩阵的大小为 $1 \times 1$,则直接将它们相乘即可。否则,将两个矩阵分成四个子矩阵并递归计算它们的乘积,然后组合子矩阵的乘积得到最终结果。
使用示例:
```python
A = [[1, 2],
[3, 4]]
B = [[5, 6],
[7, 8]]
C = matrix_multiply(A, B)
print(C)
```
输出结果为:
```
[[19, 22], [43, 50]]
```
阅读全文