strassen矩阵乘法分治法代码
时间: 2023-05-22 17:04:14 浏览: 136
这是一个非常流行的矩阵乘法实现算法,可以被实现为分治算法。以下是 Strassen 矩阵乘法的 Python 代码实现:
```python
def strassen(A, B):
n = len(A)
if n == 1:
return [[A[0][0] * B[0][0]]]
# 创建一个空矩阵
C = [[0 for i in range(n)] for j in range(n)]
# 拆分输入矩阵
A11, A12, A21, A22 = split(A)
B11, B12, B21, B22 = split(B)
# 递归计算 Strassen 矩阵乘法
P1 = strassen(add(A11, A22), add(B11, B22))
P2 = strassen(add(A21, A22), B11)
P3 = strassen(A11, sub(B12, B22))
P4 = strassen(A22, sub(B21, B11))
P5 = strassen(add(A11, A12), B22)
P6 = strassen(sub(A21, A11), add(B11, B12))
P7 = strassen(sub(A12, A22), add(B21, B22))
# 合并矩阵
C11 = add(sub(add(P1, P4), P5), P7)
C12 = add(P3, P5)
C21 = add(P2, P4)
C22 = add(sub(add(P1, P3), P2), P6)
# 返回结果
merge(C11, C12, C21, C22, C)
return C
# 矩阵加法
def add(A, B):
n = len(A)
C = [[0 for i in range(n)] for j in range(n)]
for i in range(n):
for j in range(n):
C[i][j] = A[i][j] + B[i][j]
return C
# 矩阵减法
def sub(A, B):
n = len(A)
C = [[0 for i in range(n)] for j in range(n)]
for i in range(n):
for j in range(n):
C[i][j] = A[i][j] - B[i][j]
return C
# 拆分矩阵
def split(A):
n = len(A) // 2
A11 = [[0 for i in range(n)] for j in range(n)]
A12 = [[0 for i in range(n)] for j in range(n)]
A21 = [[0 for i in range(n)] for j in range(n)]
A22 = [[0 for i in range(n)] for j in range(n)]
for i in range(n):
for j in range(n):
A11[i][j] = A[i][j]
A12[i][j] = A[i][j+n]
A21[i][j] = A[i+n][j]
A22[i][j] = A[i+n][j+n]
return A11, A12, A21, A22
# 合并矩阵
def merge(A11, A12, A21, A22, A):
n = len(A11)
for i in range(n):
for j in range(n):
A[i][j] = A11[i][j]
A[i][j+n] = A12[i][j]
A[i+n][j] = A21[i][j]
A[i+n][j+n] = A22[i][j]
```
这是一个 Python 实现的 Strassen 矩阵乘法分治法算法。
阅读全文