pytorch加载模型继续训练
时间: 2023-07-07 18:42:16 浏览: 88
要在 PyTorch 中加载预训练模型并继续训练,需要执行以下步骤:
1. 加载预训练模型:
```
import torch
import torchvision.models as models
model = models.resnet18(pretrained=True)
```
2. 冻结模型参数:
```
for param in model.parameters():
param.requires_grad = False
```
3. 更改最后一层分类器:
```
num_classes = 10
model.fc = torch.nn.Linear(model.fc.in_features, num_classes)
```
4. 定义损失函数和优化器:
```
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.fc.parameters(), lr=0.001, momentum=0.9)
```
5. 加载数据集并进行训练:
```
for epoch in range(num_epochs):
for data in dataloader:
images, labels = data
optimizer.zero_grad()
outputs = model(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
```
这样就可以加载预训练模型并继续训练了。
阅读全文