TVL1提取光流特征水平分量、垂直分量、光应变,并将其可视化为热图,python实现
时间: 2024-04-08 20:29:43 浏览: 154
好的,以下是使用Python实现TVL1算法提取光流特征水平分量、垂直分量和光应变,并将其可视化为热图的示例代码:
```python
import cv2
import numpy as np
import matplotlib.pyplot as plt
# Load the two consecutive frames
frame1 = cv2.imread('frame1.jpg', 0)
frame2 = cv2.imread('frame2.jpg', 0)
# Convert the frames to float32
frame1 = frame1.astype(np.float32) / 255.0
frame2 = frame2.astype(np.float32) / 255.0
# Compute optical flow using TVL1 algorithm
optical_flow = cv2.optflow.DualTVL1OpticalFlow_create()
flow = optical_flow.calc(frame1, frame2, None)
# Extract horizontal and vertical components
flow_x = flow[..., 0]
flow_y = flow[..., 1]
# Compute strain (magnitude of optical flow)
strain = np.sqrt(flow_x**2 + flow_y**2)
# Resize the flow and strain to 128x128
flow_x_resized = cv2.resize(flow_x, (128, 128))
flow_y_resized = cv2.resize(flow_y, (128, 128))
strain_resized = cv2.resize(strain, (128, 128))
# Visualize the flow and strain as heatmaps
plt.figure(figsize=(12, 6))
plt.subplot(131)
plt.imshow(flow_x_resized, cmap='hot')
plt.title('Horizontal Flow')
plt.colorbar()
plt.subplot(132)
plt.imshow(flow_y_resized, cmap='hot')
plt.title('Vertical Flow')
plt.colorbar()
plt.subplot(133)
plt.imshow(strain_resized, cmap='hot')
plt.title('Strain')
plt.colorbar()
plt.show()
```
请确保将`'frame1.jpg'`和`'frame2.jpg'`替换为实际图像帧的路径。此代码使用了OpenCV的`cv2.optflow.DualTVL1OpticalFlow_create()`函数来计算TVL1光流。然后,提取了光流的水平分量、垂直分量和光应变,并将它们调整为128x128大小的图像。最后,使用热图(colormap为`hot`)来可视化光流和光应变图像。
这样,你就可以使用TVL1算法提取光流特征水平分量、垂直分量和光应变,并将其可视化为热图了。
阅读全文