class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 16, kernel_size=3, stride=1, padding=1) self.conv2 = nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1) self.fc1 = nn.Linear(32 * 7 * 7, 128) self.fc2 = nn.Linear(128, 10) def forward(self, x): x = F.relu(self.conv1(x)) x = F.max_pool2d(x, 2) x = F.relu(self.conv2(x)) x = F.max_pool2d(x, 2) x = x.view(x.size(0), -1) x = F.relu(self.fc1(x)) x = self.fc2(x) return x # 创建网络实例 net = Net()class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 16, kernel_size=3, stride=1, padding=1) self.conv2 = nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1) self.fc1 = nn.Linear(32 * 7 * 7, 128) self.fc2 = nn.Linear(128, 10) def forward(self, x): x = F.relu(self.conv1(x)) x = F.max_pool2d(x, 2) x = F.relu(self.conv2(x)) x = F.max_pool2d(x, 2) x = x.view(x.size(0), -1) x = F.relu(self.fc1(x)) x = self.fc2(x) return x # 创建网络实例 net = Net()写一个尝试将数据集更改为FashionMNIST或者CIFIR10再训练模型,或对比卷积神经网络和全连接神经网络模型的预测准确度,或尝试数据增强方法的代码
时间: 2023-11-28 20:05:19 浏览: 161
好的,你的问题是关于深度学习模型和数据集的。你想尝试将数据集更改为FashionMNIST或者CIFAR10再训练模型,或对比卷积神经网络和全连接神经网络模型的预测准确度,并且想要了解数据增强方法的代码。
首先,我们可以先下载FashionMNIST或者CIFAR10数据集。这两个数据集都是常用的计算机视觉数据集,FashionMNIST包含10个类别的70,000张灰度图像,CIFAR10包含10个类别的60,000张彩色图像。我们可以使用torchvision包中的datasets模块来下载这些数据集。
```python
import torchvision.datasets as datasets
# 下载FashionMNIST数据集
train_dataset = datasets.FashionMNIST(root='./data', train=True, download=True, transform=transforms.ToTensor())
test_dataset = datasets.FashionMNIST(root='./data', train=False, download=True, transform=transforms.ToTensor())
# 下载CIFAR10数据集
train_dataset = datasets.CIFAR10(root='./data', train=True, download=True, transform=transforms.ToTensor())
test_dataset = datasets.CIFAR10(root='./data', train=False, download=True, transform=transforms.ToTensor())
```
接着,我们可以重新定义网络模型,将输入通道数改为FashionMNIST或CIFAR10数据集的通道数,输出类别数改为10。
```python
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1) # CIFAR10数据集的通道数为3
self.conv2 = nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1)
self.fc1 = nn.Linear(32 * 8 * 8, 128) # CIFAR10数据集的图像尺寸为32x32,经过两次池化后尺寸为8x8
self.fc2 = nn.Linear(128, 10) # 输出类别数改为10
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.max_pool2d(x, 2)
x = F.relu(self.conv2(x))
x = F.max_pool2d(x, 2)
x = x.view(x.size(0), -1)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
# 创建网络实例
net = Net()
```
我们可以尝试使用卷积神经网络和全连接神经网络模型分别对FashionMNIST或CIFAR10数据集进行训练,并比较预测准确度。
```python
import torch.optim as optim
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
# 训练网络
for epoch in range(10): # 只训练10个epoch
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
print('[%d] loss: %.3f' % (epoch + 1, running_loss / len(trainloader)))
# 在测试集上测试网络
correct = 0
total = 0
with torch.no_grad():
for data in testloader:
images, labels = data
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy: %d %%' % (100 * correct / total))
```
我们也可以尝试使用数据增强方法来提高模型的泛化能力,常用的数据增强方法包括随机裁剪、随机旋转、随机水平/垂直翻转等。我们可以使用torchvision包中的transforms模块来实现这些数据增强方法。
```python
import torchvision.transforms as transforms
# 定义数据增强方法
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.RandomRotation(15),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
# 使用数据增强方法对数据集进行处理
trainset = datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train)
testset = datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test)
# 创建数据加载器
trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=4)
testloader = torch.utils.data.DataLoader(testset, batch_size=128, shuffle=False, num_workers=4)
```
使用数据增强方法训练模型的代码和之前的代码类似,不过我们需要将数据加载器改为使用数据增强方法处理后的数据集。
```python
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
# 训练网络
for epoch in range(10): # 只训练10个epoch
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
print('[%d] loss: %.3f' % (epoch + 1, running_loss / len(trainloader)))
# 在测试集上测试网络
correct = 0
total = 0
with torch.no_grad():
for data in testloader:
images, labels = data
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy: %d %%' % (100 * correct / total))
```
希望这些代码能够帮助你更好地了解深度学习模型和数据集的使用。
阅读全文