已知交叉验证得到的特征、标签的训练集和测试集,使用python代码如何先对训练集进行特征选择,再进行模型训练
时间: 2024-02-12 19:05:04 浏览: 69
python 划分数据集为训练集和测试集的方法
针对这个问题,建议您可以按照以下步骤操作:
1. 导入相关库和数据集
```python
import pandas as pd
from sklearn.feature_selection import SelectKBest, f_classif
from sklearn.model_selection import cross_val_score
from sklearn.svm import SVC
train_data = pd.read_csv('train.csv')
test_data = pd.read_csv('test.csv')
```
2. 对训练集进行特征选择
```python
# 特征选择
selector = SelectKBest(f_classif, k=10)
X_train_selected = selector.fit_transform(X_train, y_train)
```
3. 使用交叉验证进行模型训练
```python
# 模型训练
svm = SVC()
scores = cross_val_score(svm, X_train_selected, y_train, cv=5)
```
完整代码示例:
```python
import pandas as pd
from sklearn.feature_selection import SelectKBest, f_classif
from sklearn.model_selection import cross_val_score
from sklearn.svm import SVC
train_data = pd.read_csv('train.csv')
test_data = pd.read_csv('test.csv')
# 特征选择
selector = SelectKBest(f_classif, k=10)
X_train = train_data.drop('label', axis=1)
y_train = train_data['label']
X_train_selected = selector.fit_transform(X_train, y_train)
# 模型训练
svm = SVC()
scores = cross_val_score(svm, X_train_selected, y_train, cv=5)
print(scores.mean())
```
其中,`SelectKBest(f_classif, k=10)` 表示使用 ANOVA F-value 进行特征选择,选择 k=10 个最相关的特征;`cross_val_score()` 函数进行交叉验证,`cv=5` 表示 5 折交叉验证。
阅读全文