函数优化题目:求函数的最大值,变量的取值范围为0~31(63)之间的整数。遗传算法采用整数编码。要求:完成轮盘赌算法代码实现,完成整数编码函数优化的GA代码实现。使用python给我完整的代码
时间: 2024-06-09 10:12:32 浏览: 70
遗传算法_遗传算法求函数最大值_
5星 · 资源好评率100%
好的,以下是完整的代码实现:
```python
import random
# 定义目标函数,这里使用简单的函数 y = x^2
def fitness_function(x):
return x ** 2
# 定义个体类
class Individual:
def __init__(self, chromosome):
self.chromosome = chromosome
self.fitness = fitness_function(self.decode_chromosome())
# 解码染色体,将二进制转换为十进制
def decode_chromosome(self):
return int(''.join([str(gene) for gene in self.chromosome]), 2)
# 定义遗传算法类
class GeneticAlgorithm:
def __init__(self, population_size, chromosome_length, mutation_rate, crossover_rate, elitism):
self.population_size = population_size
self.chromosome_length = chromosome_length
self.mutation_rate = mutation_rate
self.crossover_rate = crossover_rate
self.elitism = elitism
self.population = []
for i in range(population_size):
chromosome = [random.randint(0, 1) for j in range(chromosome_length)]
individual = Individual(chromosome)
self.population.append(individual)
# 选择操作,使用轮盘赌算法
def selection(self):
total_fitness = sum([individual.fitness for individual in self.population])
roulette_wheel_position = random.uniform(0, total_fitness)
spin_wheel = 0
for individual in self.population:
spin_wheel += individual.fitness
if spin_wheel >= roulette_wheel_position:
return individual
# 交叉操作,使用单点交叉
def crossover(self, parent1, parent2):
crossover_point = random.randint(1, self.chromosome_length - 1)
child1 = parent1.chromosome[:crossover_point] + parent2.chromosome[crossover_point:]
child2 = parent2.chromosome[:crossover_point] + parent1.chromosome[crossover_point:]
return Individual(child1), Individual(child2)
# 变异操作,使用单点变异
def mutation(self, individual):
mutation_point = random.randint(0, self.chromosome_length - 1)
individual.chromosome[mutation_point] = 1 - individual.chromosome[mutation_point]
individual.fitness = fitness_function(individual.decode_chromosome())
# 进化操作,包括选择、交叉、变异
def evolve(self):
new_population = []
if self.elitism:
# 如果启用精英主义,则直接将适应度最高的个体复制到下一代
sorted_population = sorted(self.population, key=lambda individual: individual.fitness, reverse=True)
new_population.append(sorted_population[0])
while len(new_population) < self.population_size:
parent1 = self.selection()
parent2 = self.selection()
if random.uniform(0, 1) < self.crossover_rate:
offspring1, offspring2 = self.crossover(parent1, parent2)
else:
offspring1, offspring2 = parent1, parent2
if random.uniform(0, 1) < self.mutation_rate:
self.mutation(offspring1)
if random.uniform(0, 1) < self.mutation_rate:
self.mutation(offspring2)
new_population.append(offspring1)
if len(new_population) < self.population_size:
new_population.append(offspring2)
self.population = new_population
# 获取适应度最高的个体
def get_best_individual(self):
return max(self.population, key=lambda individual: individual.fitness)
# 运行遗传算法
ga = GeneticAlgorithm(population_size=100, chromosome_length=6, mutation_rate=0.01, crossover_rate=0.8, elitism=True)
for i in range(100):
ga.evolve()
best_individual = ga.get_best_individual()
print(f'Generation {i}: Best fitness = {best_individual.fitness}, Best individual = {best_individual.decode_chromosome()}')
```
上述代码中,我们定义了一个简单的目标函数 y = x^2 ,并使用遗传算法求解该函数的最大值。我们将变量的取值范围限定在 0~63 之间的整数,然后使用整数编码方式将变量编码成二进制数。在遗传算法中,我们使用轮盘赌算法进行选择操作,使用单点交叉和单点变异进行交叉和变异操作。此外,我们还实现了精英主义策略,即每一代直接复制适应度最高的个体到下一代,以确保算法的收敛性。
在主函数中,我们实例化了遗传算法对象,并运行了 100 代,每一代都输出当前最优个体的适应度和染色体编码值。你可以根据自己的需要修改代码中的参数,例如种群大小、染色体长度、交叉率、变异率等等,以达到更好的效果。
阅读全文