df_iris = pd.read_csv(train_path,header=0,names=names)
时间: 2024-04-26 21:22:51 浏览: 100
这行代码的作用是使用 Pandas 库中的 `read_csv()` 函数从本地文件读取数据,并将数据存储在一个名为 `df_iris` 的 Pandas 数据帧中。具体来说,`read_csv()` 函数的第一个参数是本地文件路径,它使用了前面获取的 `train_path` 变量表示的路径。第二个参数 `header` 指定了数据集是否包含列名,这里设置为 0 表示数据集包含列名。第三个参数 `names` 指定了数据集每列的名称,这里使用了前面定义的 `names` 列表作为参数。这个函数会返回一个 Pandas 数据帧,其中包含了 120 条记录和 5 个列,每列分别表示花萼长度、花萼宽度、花瓣长度、花瓣宽度和鸢尾花的种类。这个数据帧存储在 `df_iris` 变量中,可以用于后续的数据处理和分析。
相关问题
if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--path', type=str, default=r"data/UCI HAR Dataset/UCI HAR Dataset", help='UCI dataset data path') parser.add_argument('--save', type=str, default='data/UCI_Smartphone_Raw.csv', help='save file name') args = parser.parse_args() data_path = args.path # read train subjects train_subjects = pd.read_csv(os.path.join(data_path, 'train/subject_train.txt'), header=None, names=['subject']) # read test subjects test_subjects = pd.read_csv(os.path.join(data_path, 'test/subject_test.txt'), header=None, names=['subject']) # concat subjects = pd.concat([train_subjects, test_subjects], axis=0) # read train labels train_labels = pd.read_csv(os.path.join(data_path, 'train/y_train.txt'), header=None, names=['label']) # read train labels test_labels = pd.read_csv(os.path.join(data_path, 'test/y_test.txt'), header=None, names=['label']) # labels labels = pd.concat([train_labels, test_labels], axis=0) final_dataframe = pd.concat([subjects, labels], axis=1) data = [] for name in COLUMNS: final_dataframe = pd.concat([final_dataframe, read_txt(name)], axis=1) final_dataframe.to_csv(args.save,index=False) 如何将文中txt文件改成mnist数据集数据,其他不做大修改
要将代码修改为使用MNIST数据集而不是txt文件,你需要进行以下修改:
1. 导入所需的库和模块:
```python
import numpy as np
import pandas as pd
from sklearn.datasets import fetch_openml
```
2. 加载MNIST数据集:
```python
mnist = fetch_openml('mnist_784', version=1, cache=True)
```
3. 将图像矩阵和标签分别存储为numpy数组:
```python
X = mnist.data
y = mnist.target
```
4. 创建一个包含所有数据的Pandas数据框:
```python
df = pd.DataFrame(X)
df['label'] = y
```
5. 将数据框保存为CSV文件:
```python
df.to_csv(args.save, index=False)
```
注意,这里我们使用了`args.save`作为保存文件名,这是根据你之前的代码中的`--save`命令行参数来决定的。
除了以上修改,你还需要删除以下代码块,因为MNIST数据集已经包含了图像数据和标签,不需要再读取其他文件:
```python
# read train subjects
train_subjects = pd.read_csv(os.path.join(data_path, 'train/subject_train.txt'), header=None, names=['subject'])
# read test subjects
test_subjects = pd.read_csv(os.path.join(data_path, 'test/subject_test.txt'), header=None, names=['subject'])
# concat
subjects = pd.concat([train_subjects, test_subjects], axis=0)
# read train labels
train_labels = pd.read_csv(os.path.join(data_path, 'train/y_train.txt'), header=None, names=['label'])
# read train labels
test_labels = pd.read_csv(os.path.join(data_path, 'test/y_test.txt'), header=None, names=['label'])
# labels
labels = pd.concat([train_labels, test_labels], axis=0)
final_dataframe = pd.concat([subjects, labels], axis=1)
data = []
for name in COLUMNS:
final_dataframe = pd.concat([final_dataframe, read_txt(name)], axis=1)
```
这些修改后的代码将直接将MNIST数据集转换为CSV文件,并保存到指定的路径中。
df_path = pd.read_csv(root + '\\train.csv', header=None, usecols=[0]) df_label = pd.read_csv(root + '\\train.csv', header=None, usecols=[1])
你想问的是关于读取CSV文件的问题吗?这段代码是用来读取名为"train.csv"的文件,并将第一列存储在df_path变量中,将第二列存储在df_label变量中。"root"是文件所在的路径。通过指定header=None参数,可以告诉pandas不要将第一行作为列名。usecols参数允许你选择要读取的列。在这个例子中,我们只选择了第0列和第1列。
阅读全文