写一个MultiHeadedAttention代码
时间: 2023-08-31 13:32:00 浏览: 116
collaborative-attention:多头注意力代码
5星 · 资源好评率100%
### 回答1:
好的,以下是一个简单的MultiHeadedAttention的代码实现,供您参考:
```python
import torch
import torch.nn as nn
class MultiHeadedAttention(nn.Module):
def __init__(self, input_dim, num_heads):
super(MultiHeadedAttention, self).__init__()
self.num_heads = num_heads
self.head_dim = input_dim // num_heads
self.linear_q = nn.Linear(input_dim, input_dim)
self.linear_k = nn.Linear(input_dim, input_dim)
self.linear_v = nn.Linear(input_dim, input_dim)
self.linear_out = nn.Linear(input_dim, input_dim)
def forward(self, query, key, value, mask=None):
batch_size = query.size(0)
# apply linear transformations to get query, key, and value in the right shape
Q = self.linear_q(query)
K = self.linear_k(key)
V = self.linear_v(value)
# split Q, K, and V into num_heads pieces
Q = Q.view(batch_size, self.num_heads, self.head_dim)
K = K.view(batch_size, self.num_heads, self.head_dim)
V = V.view(batch_size, self.num_heads, self.head_dim)
# compute scaled dot product attention for each head
scores = torch.bmm(Q, K.transpose(1, 2)) / (self.head_dim ** 0.5)
if mask is not None:
scores = scores.masked_fill(mask == 0, -1e9)
attn = nn.Softmax(dim=-1)(scores)
attn_weights = attn.view(batch_size, self.num_heads, -1)
# compute weighted sum of values for each head
weighted_values = torch.bmm(attn, V)
# concatenate weighted values from each head and apply linear transformation
weighted_values = weighted_values.view(batch_size, -1, input_dim)
output = self.linear_out(weighted_values)
return output, attn_weights
```
该实现包含了一个继承自PyTorch的`nn.Module`的子类`MultiHeadedAttention`。在`__init__`函数中,我们定义了一个`num_heads`参数,以指定我们要将输入向量分成几个头。接下来,我们定义了四个`nn.Linear`层,用于将输入的`query`,`key`和`value`向量转换为正确的形状。然后,我们定义了一个`nn.Linear`层,用于将拼接后的加权值向量转换回原始的输入向量。
在`forward`函数中,我们首先将输入的`query`,`key`和`value`向量分别应用于对应的线性层,以得到相应的查询向量`Q`,键向量`K`和值向量`V`。然后,我们将这些向量分成`num_heads`个头,并为每个头计算一个缩放的点积注意力权重。我们还可以选择应用掩码,以忽略不需要的信息。最后,我们计算每个头的加权值,将它们连接起来,然后将它们应用于输出线性层。
### 回答2:
以下是一个简单的MultiHeadedAttention代码示例:
```python
import torch
import torch.nn as nn
class MultiHeadedAttention(nn.Module):
def __init__(self, d_model, n_head):
super(MultiHeadedAttention, self).__init__()
self.d_model = d_model
self.n_head = n_head
self.query_linear = nn.Linear(d_model, d_model)
self.key_linear = nn.Linear(d_model, d_model)
self.value_linear = nn.Linear(d_model, d_model)
self.final_linear = nn.Linear(d_model, d_model)
def forward(self, query, key, value):
batch_size = query.size(0)
# 做线性变换得到查询(Q)、键(K)和值(V)的投影
query = self.query_linear(query)
key = self.key_linear(key)
value = self.value_linear(value)
# 将查询(Q)、键(K)和值(V)进行分割成n_head份,然后进行维度重塑
query = query.view(batch_size * self.n_head, -1, self.d_model // self.n_head)
key = key.view(batch_size * self.n_head, -1, self.d_model // self.n_head)
value = value.view(batch_size * self.n_head, -1, self.d_model // self.n_head)
# 计算注意力分数
attention_scores = torch.matmul(query, key.transpose(-2, -1))
attention_scores = attention_scores / torch.sqrt(torch.tensor(self.d_model // self.n_head, dtype=torch.float32))
attention_probs = nn.Softmax(dim=-1)(attention_scores)
# 加权求和得到输出
context = torch.matmul(attention_probs, value)
# 维度重塑和线性变换
context = context.view(batch_size, -1, self.d_model)
output = self.final_linear(context)
return output
```
上述代码实现了一个简单的多头注意力(MultiHeadedAttention)模块。目前主流的注意力机制有很多变种,上述代码实现的是最经典的加性注意力机制。该模块根据输入的查询(query)、键(key)和值(value),通过线性变换得到它们的投影。然后,将查询、键和值分别进行拆分,按照头数(n_head)分成多份,并进行维度重塑以便进行矩阵运算。接下来,计算注意力分数,并通过Softmax函数进行归一化。最后,根据注意力分数对值进行加权求和得到最终的输出。最后,将输出进行维度重塑和线性变换得到最终的多头注意力的输出结果。
### 回答3:
以下是一个简单的多头注意力机制(Multi-Headed Attention)的代码实现:
```python
import torch
import torch.nn as nn
class MultiHeadedAttention(nn.Module):
def __init__(self, d_model, num_heads):
super(MultiHeadedAttention, self).__init__()
self.num_heads = num_heads
self.d_model = d_model
self.dim_per_head = d_model // num_heads
self.linear_queries = nn.Linear(d_model, d_model)
self.linear_keys = nn.Linear(d_model, d_model)
self.linear_values = nn.Linear(d_model, d_model)
self.linear_out = nn.Linear(d_model, d_model)
def forward(self, queries, keys, values, mask=None):
batch_size = queries.size(0)
# 将输入线性映射得到查询、键和值
queries = self.linear_queries(queries)
keys = self.linear_keys(keys)
values = self.linear_values(values)
# 将查询、键和值变形以支持多头
queries = queries.view(batch_size, -1, self.num_heads, self.dim_per_head).transpose(1, 2)
keys = keys.view(batch_size, -1, self.num_heads, self.dim_per_head).transpose(1, 2)
values = values.view(batch_size, -1, self.num_heads, self.dim_per_head).transpose(1, 2)
# 缩放点积注意力
scaled_attention = self.scaled_dot_product_attention(queries, keys, values, mask)
# 将多头的结果连接起来,并线性映射得到最终输出
concatenated_attention = scaled_attention.transpose(1, 2).contiguous().view(batch_size, -1, self.d_model)
output = self.linear_out(concatenated_attention)
return output
def scaled_dot_product_attention(self, queries, keys, values, mask=None):
d_k = queries.size(-1)
# 根据查询、键计算注意力权重
scores = torch.matmul(queries, keys.transpose(-2, -1)) / torch.sqrt(torch.tensor(d_k, dtype=torch.float32))
if mask is not None:
scores = scores.masked_fill(mask == 0, float('-inf'))
# 对注意力权重进行softmax归一化
attention_weights = torch.softmax(scores, dim=-1)
# 根据注意力权重计算加权和
attention_output = torch.matmul(attention_weights, values)
return attention_output
```
这个代码实现了一个多头注意力机制。它接受查询(queries)、键(keys)、值(values)作为输入,并返回基于这些输入计算得到的多头注意力结果。代码中首先对输入进行线性映射,然后将映射结果分为多个头(num_heads)进行处理。每个头都通过点积注意力计算得到权重,再根据权重对值进行加权和处理。最后将多个头的结果连接起来并进行线性映射,得到最终的多头注意力结果。
阅读全文