python爬取推文
时间: 2023-08-21 19:03:24 浏览: 154
要使用Python爬取推文,你可以使用第三方库如Tweepy。以下是一个简单的示例代码,展示了如何使用Tweepy来获取推文数据:
引用中的示例代码使用了Scrapy爬虫框架,但与爬取推文无关,因此可以忽略。
引用中的示例代码使用了Python的Flask、BeautifulSoup和Selenium库,但同样与爬取推文无关,可以忽略。***以下是一个基本的爬取推文的代码示例:
```python
import tweepy
# 设置*** API的访问凭证
consumer_key = "YOUR_CONSUMER_KEY"
consumer_secret = "YOUR_CONSUMER_SECRET"
access_token = "YOUR_ACCESS_TOKEN"
access_token_secret = "YOUR_ACCESS_TOKEN_SECRET"
# 创建Tweepy的认证对象
auth = tweepy.OAuthHandler(consumer_key, consumer_secret)
auth.set_access_token(access_token, access_token_secret)
# 创建Tweepy的API对象
api = tweepy.API(auth)
# 搜索推文并打印结果
tweets = api.search(q="python", count=10) # 在本例中以关键字"python"进行搜索,最多返回10条推文
for tweet in tweets:
print(tweet.text)
```
在上述代码中,你需要将`YOUR_CONSUMER_KEY`、`YOUR_CONSUMER_SECRET`、`YOUR_ACCESS_TOKEN` 和 `YOUR_ACCESS_TOKEN_SECRET` 替***.search`方法来搜索与关键字"python"相关的推文,并
#### 引用[.reference_title]
- *1* [使用Python的爬虫框架Scrapy来爬取网页数据.txt](https://download.csdn.net/download/weixin_44609920/88225579)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"]
- *2* [python爬取搜狗微信的推文](https://blog.csdn.net/winson20102010/article/details/122457048)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"]
- *3* [python爬取微信公众号文章](https://blog.csdn.net/liujingliuxingjiang/article/details/116059864)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"]
[ .reference_list ]
阅读全文