logistic逻辑回归代码
时间: 2023-10-27 13:22:57 浏览: 97
可以Python来实现logistic逻辑回归。以下是一个示例代码:
```python
import numpy as np
from sklearn.linear_model import LogisticRegression
# 准备数据
X = np.array([[1, 2], [3, 4], [5, 6]]) # 特征矩阵
y = np.array([0, 0, 1]) # 目标变量
# 创建逻辑回归模型
model = LogisticRegression()
# 拟合模型
model.fit(X, y)
# 预测新样本
new_sample = np.array([[7, 8]])
prediction = model.predict(new_sample)
# 打印预测结果
print(prediction)
```
这段代码演示了如何使用逻辑回归来对一个学生是否被大学录取进行预测。首先,我们准备了一些示例数据,其中X是特征矩阵,y是目标变量。然后,我们创建了一个逻辑回归模型,并使用`fit`方法进行拟合。最后,我们使用训练好的模型对新样本进行预测,并打印出预测结果。在这个例子中,预测结果是0或1,表示学生被录取的概率。你可以根据自己的数据和需求来修改代码。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* [logistic回归分析matlab代码-LogisticRegression:Python中的逻辑回归](https://download.csdn.net/download/weixin_38750406/19119107)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"]
- *2* [python编写Logistic逻辑回归](https://download.csdn.net/download/weixin_38624437/12871353)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"]
- *3* [logistic回归,逻辑回归代码实现](https://blog.csdn.net/donkey_1993/article/details/79880939)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"]
[ .reference_list ]
阅读全文