function [z,mu,sigma] = zscore(x,flag,dim) %ZSCORE Standardized z score for tall arrays % Z = ZSCORE(X) % [Z,MU,SIGMA] = ZSCORE(X) % [...] = ZSCORE(X,1) % [...] = ZSCORE(X,FLAG,DIM) % % See also ZSCORE, MEAN, STD. % Copyright 2015 The MathWor

时间: 2024-04-28 19:27:01 浏览: 118
ker Inc. 这是一个 Matlab 函数,用于对一个 tall 数组进行标准化处理,返回标准化后的数组 Z,以及均值 MU 和标准差 SIGMA。其中 flag 和 dim 是可选参数,用于指定标准化的方向和方式。如果 flag 为 1,则表示按列进行标准化;如果 flag 为 0 或省略,则表示按行进行标准化。dim 参数用于指定在哪个维度上进行标准化,如果省略则默认为第一个非单一维度。该函数是由 MathWorks 公司版权所有。
相关问题

load ('D:\matlab1\mat\170.mat') X = data.X; % 特征数据 Y = data.Y; % 标签数据 % 数据预处理 X = zscore(X); % 对特征数据进行标准化处理 % 划分训练集和测试集 cv = cvpartition(size(X,1),'HoldOut',0.3); % 划分数据集,70%的数据用于训练,30%的数据用于测试 idx = cv.test; % 获取测试集索引 XTrain = X(~idx,:); % 训练集特征数据 YTrain = categorical(Y(~idx)); % 训练集标签数据 XTest = X(idx,:); % 测试集特征数据 YTest = categorical(Y(idx)); % 测试集标签数据未定义变量 "data" 或类 "data.X"。 出错 resnet_18 (line 7) X = data.X; % 特征数据

在这段MATLAB代码中,出现了变量未定义的错误,可能是因为变量没有被正确加载或定义。在这段代码中,需要确保以下变量已经被正确加载或定义: 1. `data.X`:特征数据。 2. `data.Y`:标签数据。 如果这些变量没有被正确加载或定义,可以尝试使用以下代码进行加载: ``` load('D:\matlab1\mat\170.mat'); X = double(XTrain)/255; % 获取训练集特征数据 Y = categorical(YTrain); % 获取训练集标签数据 % 数据预处理 X = zscore(X); % 对特征数据进行标准化处理 % 划分训练集和测试集 cv = cvpartition(length(Y),'HoldOut',0.3); % 划分数据集,70%的数据用于训练,30%的数据用于测试 idx = cv.test; % 获取测试集索引 XTrain = X(~idx,:); % 训练集特征数据 YTrain = Y(~idx); % 训练集标签数据 XTest = X(idx,:); % 测试集特征数据 YTest = Y(idx); % 测试集标签数据 ``` 其中,`XTrain`和`YTrain`是从`.mat`文件中加载的训练集特征数据和标签数据,`X`和`Y`是为了方便数据预处理而定义的中间变量。然后对特征数据进行标准化处理,最后使用`cvpartition`函数将数据集划分为训练集和测试集,其中70%的数据用于训练,30%的数据用于测试。最后将训练集和测试集的特征数据和标签数据保存到`XTrain`、`XTest`、`YTrain`和`YTest`变量中,其中标签数据不需要使用`categorical`函数进行转换,因为在`.mat`文件中已经是分类数组的格式。

[E,MU_x,SIGMA_x]=zscore(X); [F,MU_y,SIGMA_y] = zscore(Y); 错在哪里

您提供的代码片段看起来是在使用 MATLAB 中的 `zscore` 函数对两个矩阵 `X` 和 `Y` 进行标准化(Z-score 转换),即将每个元素转换为对应于标准正态分布的标准分数。但是代码中并没有明显的错误。 `zscore` 的语法通常是这样的: ```matlab [E, MU, SIGMA] = zscore(X); ``` 对于两组数据 `[E,MU_x,SIGMA_x] = zscore(X);` 和 `[F,MU_y,SIGMA_y] = zscore(Y);`,可能是想分别计算 X 和 Y 的 Z 分数,以及它们各自的均值 (`MU_x`, `MU_y`) 和标准差 (`SIGMA_x`, `SIGMA_y`)。 如果您的意图是分别处理 `X` 和 `Y` 并存储结果,那么代码是正确的。但如果 `X` 和 `Y` 应该一起计算,应该只调用一次 `zscore`: ```matlab [MU, SIGMA] = zscore([X; Y]); E = (X - MU) ./ SIGMA; F = (Y - MU) ./ SIGMA; ``` 这里假设 `X` 和 `Y` 是需要组合在一起的向量或矩阵。若非如此,原始代码就是合适的。
阅读全文

相关推荐

DD=xlsread('residual.xlsx') P=DD(1:621,1)' N=length(P) n=486 F =P(1:n+2) Yt=[0,diff(P,1)] L=diff(P,2) Y=L(1:n) a=length(L)-length(Y) aa=a Ux=sum(Y)/n yt=Y-Ux b=0 for i=1:n b=yt(i)^2/n+b end v=sqrt(b) Y=zscore(Y) f=F(1:n) t=1:n R0=0 for i=1:n R0=Y(i)^2/n+R0 end for k=1:20 R(k)=0 for i=k+1:n R(k)=Y(i)*Y(i-k)/n+R(k) end end x=R/R0 X1=x(1);xx(1,1)=1;X(1,1)=x(1);B(1,1)=x(1); K=0;T=X1 for t=2:n at=Y(t)-T(1)*Y(t-1) K=(at)^2+K end U(1)=K/(n-1) for i =1:19 B(i+1,1)=x(i+1); xx(1,i+1)=x(i); A=toeplitz(xx); XX=A\B XXX=XX(i+1); X(1,i+1)=XXX; K=0;T=XX; for t=i+2:n r=0 for j=1:i+1 r=T(j)*Y(t-j)+r end at= Y(t)-r K=(at)^2+K end U(i+1)=K/(n-i+1) end q=20 S(1,1)=R0; for i = 1:q-1 S(1,i+1)=R(i); end G=toeplitz(S) W=inv(G)*[R(1:q)]' U=20*U for i=1:20 AIC2(i)=n*log(U(i))+2*(i) end q=20 C=0;K=0 for t=q+2:n at=Y(t)+Y(q+1); for i=1:q at=-W(i)*Y(t-i)-W(i)*Y(q-i+1)+at; end at1=Y(t-1); for i=1:q at1=-W(i)*Y(t-i-1)+at1 end C=at*at1+C K=(at)^2+K end p=C/K XT=[L(n-q+1:n+a)] for t=q+1:q+a m(t)=0 for i=1:q m(t)=W(i)*XT(t-i)+m(t) end end m=m(q+1:q+a) for i =1:a m(i)=Yt(n+i+1)+m(i) z1(i)=P(n+i+1)+m(i); end for t=q+1:n r=0 for i=1:q r=W(i)*Y(t-i)+r end at= Y(t)-r end figure for t=q+1:n y(t)=0 for i=1:q y(t)=W(i)*Y(t-i)+y(t) end y(t)=y(t)+at y(t)=Yt(t+1)-y(t) y(t)=P(t+1)-y(t) end D_a=P(n+2:end-1); for i=1:a e6_a(i)=D_a(i)-z1(i) PE6_a(i)= (e6_a(i)/D_a(i))*100 end e6_a PE6_a 1-abs(PE6_a) mae6_a=sum(abs(e6_a)) /6 MAPE6_a=sum(abs(PE6_a))/6 Z(1)=0;Xt=0 for i =1:q Xt(1,i)=Y(n-q+i) end for i =1:q Z(1)=W(i)*Xt(q-i+1)+Z(1) end for l=2:q K(l)=0 for i=1:l-1 K(l)=W(i)*Z(l-i)+K(l) end G(l)=0 for j=l:q G(l)=W(j)*Xt(q+l-j)+G(l) end Z(l)=K(l)+G(l) end for l=q+1:aa K(l)=0 for i=1:q K(l)=W(i)*Z(l-i)+K(l) end Z(l)=K(l) end r=Z*v+Ux r(1)=Yt(n+2)+r(1) z(1)=P(n+2)+r(1) for i=2:aa r(i)=r(i-1)+r(i) z(i)=z(i-1)+r(i) end D=P(n+2:end-1) for i=1:aa e6(i)=D(i)-z(i) PE6(i)= (e6(i)/D(i))*100 end e6 PE6 1-abs(PE6) mae6=sum(abs(e6)) /6 MAPE6=sum(abs(PE6))/6把单步预测的完整代码单独摘出来

最新推荐

recommend-type

A级景区数据文件json

A级景区数据文件json
recommend-type

使用Java编写的坦克大战小游戏.zip学习资料

python 使用Java编写的坦克大战小游戏.zip学习资料
recommend-type

【python毕设】p073基于Spark的温布尔登特色赛赛事数据分析预测及算法实现_flask(5).zip

项目资源包含:可运行源码+sql文件+; python3.7+flask+spark+mysql5.7+vue 适用人群:学习不同技术领域的小白或进阶学习者;可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 项目具有较高的学习借鉴价值,也可拿来修改、二次开发。 有任何使用上的问题,欢迎随时与博主沟通,博主看到后会第一时间及时解答。 系统是一个很好的项目,结合了后端服务(flask)和前端用户界面(Vue.js)技术,实现了前后端分离。 后台路径地址:localhost:8080/项目名称/admin/dist/index.html 前台路径地址:localhost:8080/项目名称/front/index.html
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略

![【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略](https://cdn.codeground.org/nsr/images/img/researchareas/ai-article4_02.png) # 1. 强化学习中的损失函数基础 强化学习(Reinforcement Learning, RL)是机器学习领域的一个重要分支,它通过与环境的互动来学习如何在特定任务中做出决策。在强化学习中,损失函数(loss function)起着至关重要的作用,它是学习算法优化的关键所在。损失函数能够衡量智能体(agent)的策略(policy)表现,帮助智能体通过减少损失来改进自