采用邻接矩阵表示法创建无向网的算法

时间: 2024-01-10 16:44:57 浏览: 25
邻接矩阵是一种常见的图的表示方法,可以用来表示有向图和无向图。对于无向网,我们可以采用邻接矩阵表示法来创建。 具体算法步骤如下: 1. 定义一个二维数组adjMatrix[N][N],其中N为顶点数,初始化数组元素为0。 2. 对于每条边(u, v),将adjMatrix[u][v]和adjMatrix[v][u]的值设置为边的权值。 3. 如果两个顶点之间没有边,则adjMatrix[u][v]和adjMatrix[v][u]的值为0。 4. 最终得到的邻接矩阵就是无向网的表示。 下面是一个示例代码: ``` // 定义邻接矩阵 int adjMatrix[N][N]; // 初始化邻接矩阵 for(int i=0; i<N; i++){ for(int j=0; j<N; j++){ adjMatrix[i][j] = 0; } } // 添加边 for(int k=0; k<edgeNum; k++){ int u, v, w; cin >> u >> v >> w; adjMatrix[u][v] = w; adjMatrix[v][u] = w; } ``` 其中,edgeNum为边的数量,u和v是边的两个顶点,w是边的权值。通过循环输入每条边的信息,可以创建一个无向网的邻接矩阵。
相关问题

}//LocateVex int CreateUDN(AMGraph &G){ //采用邻接矩阵表示法,创建无向网G /**************begin************/ /**************end************/ }//CreateUDN int main(){ //cout << "************算法6.1 采用邻接矩阵表示法创建无向网**************" << endl << endl; AMGraph G; int i , j; CreateUDN(G); cout <<endl; //cout << "*****邻接矩阵表示法创建的无向网*****" << endl; for(i = 0 ; i < G.vexnum ; ++i){ for(j = 0; j < G.vexnum; ++j){ if(j != G.vexnum - 1){ if(G.arcs[i][j] != MaxInt) cout << G.arcs[i][j] << "\t"; else cout << "∞" << "\t"; } else{ if(G.arcs[i][j] != MaxInt) cout << G.arcs[i][j] <<endl; else cout << "∞" <<endl; } } }//for cout <<endl; return 0; }//main 测试输入: 3 2 A B V A B 2 A V 4 预期输出: ∞ 2 4 2 ∞ ∞ 4 ∞ ∞

下面是完整的代码实现: ```c++ #include <iostream> using namespace std; #define MaxInt 0x7ffffffe //最大值(即0X7FFFFFFF除去符号位) typedef struct{ char vexs[100]; //顶点集合 int arcs[100][100]; //邻接矩阵,可看作边表 int vexnum,arcnum; //图的当前点数和边数 }AMGraph; int LocateVex(AMGraph G,char ch){ //确定ch在G中的位置 for(int i = 0 ; i < G.vexnum ; ++i) if(G.vexs[i] == ch) return i; return -1; } int CreateUDN(AMGraph &G){ //采用邻接矩阵表示法,创建无向网G cin >> G.vexnum >> G.arcnum; //输入点数和边数 for(int i = 0 ; i < G.vexnum ; ++i) cin >> G.vexs[i]; //输入顶点信息 //初始化邻接矩阵 for(int i = 0 ; i < G.vexnum ; ++i) for(int j = 0 ; j < G.vexnum ; ++j) G.arcs[i][j] = MaxInt; //构造邻接矩阵 for(int k = 0 ; k < G.arcnum ; ++k){ char v1,v2; int w; cin >> v1 >> v2 >> w; //输入边(vi,vj)上的权值w int i = LocateVex(G,v1); //确定v1和v2在G中的位置 int j = LocateVex(G,v2); G.arcs[i][j] = w; G.arcs[j][i] = G.arcs[i][j]; //因为是无向图,矩阵对称 } return 1; } int main(){ cout << "************算法6.1 采用邻接矩阵表示法创建无向网**************" << endl << endl; AMGraph G; int i , j; CreateUDN(G); cout << endl; cout << "*****邻接矩阵表示法创建的无向网*****" << endl; for(i = 0 ; i < G.vexnum ; ++i){ for(j = 0; j < G.vexnum; ++j){ if(j != G.vexnum - 1){ if(G.arcs[i][j] != MaxInt) cout << G.arcs[i][j] << "\t"; else cout << "∞" << "\t"; } else{ if(G.arcs[i][j] != MaxInt) cout << G.arcs[i][j] <<endl; else cout << "∞" <<endl; } } }//for cout <<endl; return 0; } ``` 输入测试数据: ``` 3 2 A B V A B 2 A V 4 ``` 输出结果: ``` ************算法6.1 采用邻接矩阵表示法创建无向网************** *****邻接矩阵表示法创建的无向网***** ∞ 2 4 2 ∞ ∞ 4 ∞ ∞ ```

用图的邻接矩阵表示法实现图的深度优先搜索和广度优先搜索

图的邻接矩阵表示法是一种常见的图的表示方法,可以用来实现图的深度优先搜索和广度优先搜索。 深度优先搜索(DFS)是一种遍历图的算法,它从一个起始顶点开始,沿着一条路径一直走到底,直到不能再走为止,然后回溯到上一个顶点,继续沿着另一条路径走下去,直到遍历完整个图。DFS可以用递归或栈来实现。 广度优先搜索(BFS)是一种遍历图的算法,它从一个起始顶点开始,先访问它的所有邻居顶点,然后再访问它们的邻居顶点,以此类推,直到遍历完整个图。BFS可以用队列来实现。 具体实现时,可以先根据图的邻接矩阵表示法构建出图的邻接矩阵,然后根据DFS或BFS的算法思想,遍历整个图。在遍历过程中,可以使用一个数组来记录每个顶点的状态,例如是否已经被访问过等。遍历结束后,可以输出遍历的结果,例如每个顶点的访问顺序等。 需要注意的是,图的邻接矩阵表示法只适用于稠密图,对于稀疏图,应该使用邻接表或邻接多重表来表示。此外,在实际应用中,还需要考虑图的大小和算法的时间复杂度等因素。

相关推荐

解释代码(#include<stdio.h> //标准输入输出的头文件 #include<string.h> //含字符串处理函数的头文件,是C语言中的预处理命令 #include<malloc.h> //程序中可能会使用该头文件中定义的函数、宏和定变量等 #include <stdlib.h> //编译预处理命令 #include<iostream> //输入输出流 using namespace std; //释放std命名空间中的变量名,函数名以及类型名 #define TRUE 1 #define FALSE 0 #define OK 1 #define ERROR 0 #define OVERFLOW -2 //运算过程中出现了上溢,即运算结果超出了运算变量所能存储的范围 typedef int Status; typedef int Boolean; //布尔逻辑体系的 typedef char TElemType; //定义顺序树类型 //图的邻接矩阵存储表示 #define MaxInt 32767 //表示极大值 #define MVNum 100 //最大顶点数 typedef char VerTexType;//假设顶点的数据类型为字符型 typedef int ArcType; //假设边的权值类型为整型 typedef struct { VerTexType vex[MVNum]; //顶点表 ArcType arcs[MVNum][MVNum]; //邻接矩阵 int vexnum,arcnum; //图的当前点数和边数 }AMGraph; struct { VerTexType Head;//边的始点 VerTexType Tail;//边的终点 ArcType lowcost;//边上的权值 }Edge[MVNum]; int LocateVex(AMGraph &G,VerTexType u) {//存在则返回u在顶点表中的下标;否则返回-1 int i; for(i=0;i<G.vexnum;++i) if(u==G.vex[i]) return i; //return -1; } //采用邻接矩阵表示法创建无向图 Status CreatUDN(AMGraph &G) //创建图 { printf("请输入顶点和边数:\n"); cin>>G.vexnum>>G.arcnum; //输入总顶点数,总边数 printf("请输入顶点:\n"); for(int i=0;i<G.vexnum;i++) //依次输入点的信息 cin>>G.vex[i]; for(int i=0;i<G.vexnum;i++) //初始化邻接矩阵,边的权值均置为极大值MaxInt { for(int j=0;j<G.vexnum;j++) G.arcs[i][j]=MaxInt; } for(int k=0;k<G.arcnum;k++) //构造邻接矩阵)

最新推荐

recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

list根据id查询pid 然后依次获取到所有的子节点数据

可以使用递归的方式来实现根据id查询pid并获取所有子节点数据。具体实现可以参考以下代码: ``` def get_children_nodes(nodes, parent_id): children = [] for node in nodes: if node['pid'] == parent_id: node['children'] = get_children_nodes(nodes, node['id']) children.append(node) return children # 测试数
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

未定义标识符CFileFind

CFileFind 是MFC(Microsoft Foundation Class)中的一个类,用于在Windows文件系统中搜索文件和目录。如果你在使用CFileFind时出现了“未定义标识符”的错误,可能是因为你没有包含MFC头文件或者没有链接MFC库。你可以检查一下你的代码中是否包含了以下头文件: ```cpp #include <afx.h> ``` 另外,如果你在使用Visual Studio开发,还需要在项目属性中将“使用MFC”设置为“使用MFC的共享DLL”。这样才能正确链接MFC库。
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

关系数据表示学习

关系数据卢多维奇·多斯桑托斯引用此版本:卢多维奇·多斯桑托斯。关系数据的表示学习机器学习[cs.LG]。皮埃尔和玛丽·居里大学-巴黎第六大学,2017年。英语。NNT:2017PA066480。电话:01803188HAL ID:电话:01803188https://theses.hal.science/tel-01803188提交日期:2018年HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaireUNIVERSITY PIERRE和 MARIE CURIE计算机科学、电信和电子学博士学院(巴黎)巴黎6号计算机科学实验室D八角形T HESIS关系数据表示学习作者:Ludovic DOS SAntos主管:Patrick GALLINARI联合主管:本杰明·P·伊沃瓦斯基为满足计算机科学博士学位的要求而提交的论文评审团成员:先生蒂埃里·A·退休记者先生尤尼斯·B·恩