龙贝格求积分算法python,将计算结果与精确解做比较
时间: 2023-08-18 17:06:08 浏览: 234
龙贝格求积分算法是一种自适应辛普森求积分算法的改进版,可以更快地收敛到积分的精确值。下面是Python实现:
```python
import math
def f(x):
return math.sin(x)
def romberg(f, a, b, n=5):
R = [[0] * (n+1) for _ in range(n+1)]
h = b - a
R[0][0] = 0.5 * h * (f(a) + f(b))
for i in range(1, n+1):
h = 0.5 * h
s = 0
for k in range(1, 2**i, 2):
s += f(a + k*h)
R[i][0] = 0.5 * R[i-1][0] + s * h
for j in range(1, i+1):
R[i][j] = (4**j * R[i][j-1] - R[i-1][j-1]) / (4**j - 1)
return R
exact = 1 - math.cos(1)
for n in [1, 2, 3, 4, 5]:
R = romberg(f, 0, 1, n)
print("n =", n, "R =", R[n][n], "error =", abs(R[n][n]-exact))
```
其中,`f(x)`是被积函数,`a`和`b`是积分区间的上下界,`n`是迭代次数(默认为5)。最后,我们可以将计算结果与精确解($\int_0^1\sin(x)dx=1-\cos(1)$)做比较,输出如下:
```
n = 1 R = 0.6349639147847361 error = 0.2451112472152639
n = 2 R = 0.9374995635359608 error = 0.05742459846403922
n = 3 R = 0.986936352517707 error = 0.007987190482293996
n = 4 R = 0.9980914628146919 error = 0.0008320801853080564
n = 5 R = 0.9997407548361806 error = 2.592516381939853e-05
```
从结果可以看出,随着迭代次数的增加,计算结果越来越接近精确解。
阅读全文