Possibilistic Fuzzy c-Means Clustering python代码
时间: 2024-05-01 17:16:07 浏览: 152
Fuzzy-C-means Python代码
5星 · 资源好评率100%
以下是Python实现的Possibilistic Fuzzy c-Means聚类算法代码:
```python
import numpy as np
from sklearn.metrics.pairwise import euclidean_distances
def possibilistic_fuzzy_c_means(X, c, m, epsilon, max_iter):
# 初始化隶属度矩阵U
n, d = X.shape
U = np.random.rand(n, c)
U = np.divide(U, np.sum(U, axis=1)[:, np.newaxis])
# 初始化聚类中心
centers = np.random.rand(c, d)
# 迭代更新
for i in range(max_iter):
# 更新隶属度矩阵U
D = euclidean_distances(X, centers)
U_new = np.power(np.divide(1, D), 2/(m-1))
U_new = np.nan_to_num(U_new)
U_new = np.divide(U_new, np.sum(U_new, axis=1)[:, np.newaxis])
# 计算聚类中心
centers_new = np.zeros((c, d))
for j in range(c):
centers_new[j, :] = np.sum(np.multiply(np.power(U_new[:, j], m), X), axis=0)
centers_new[j, :] = np.divide(centers_new[j, :], np.sum(np.power(U_new[:, j], m)))
# 判断是否收敛
if np.linalg.norm(U - U_new) < epsilon:
break
U = U_new
centers = centers_new
return U, centers
```
其中,X为输入数据,c为聚类数,m为模糊度参数,epsilon为收敛阈值,max_iter为最大迭代次数。函数返回隶属度矩阵U和聚类中心centers。
阅读全文