我有标注好的xml格式数据集,帮我写个可以训练识别出人,球,鞋子这三类物体的目标检测代码,使用 EfficientNet-Lite0 模型进行训练
时间: 2023-06-10 11:07:20 浏览: 178
好的,这里提供一个使用 TensorFlow Object Detection API 进行目标检测的示例代码,使用的模型是 EfficientDet-Lite0。在这之前需要先安装 TensorFlow Object Detection API 和 EfficientDet-Lite0 模型。
```python
import tensorflow as tf
import numpy as np
import cv2
import os
# 定义类别
CLASSES = ['person', 'ball', 'shoe']
# 读取标注数据
def read_annotation(xml_path):
with open(xml_path, 'r') as f:
xml_str = f.read()
xml = tf.compat.v1.compat.v1.string_to_xml(xml_str)
boxes = []
labels = []
for obj in xml.findall('object'):
label = obj.find('name').text
if label not in CLASSES:
continue
xmin = int(obj.find('bndbox/xmin').text)
ymin = int(obj.find('bndbox/ymin').text)
xmax = int(obj.find('bndbox/xmax').text)
ymax = int(obj.find('bndbox/ymax').text)
boxes.append([xmin, ymin, xmax, ymax])
labels.append(CLASSES.index(label))
return np.array(boxes), np.array(labels)
# 定义数据集
class DetectionDataset(tf.keras.utils.Sequence):
def __init__(self, xml_dir, batch_size):
self.xml_files = [os.path.join(xml_dir, f) for f in os.listdir(xml_dir) if f.endswith('.xml')]
self.batch_size = batch_size
def __len__(self):
return len(self.xml_files) // self.batch_size
def __getitem__(self, idx):
batch_xml = self.xml_files[idx*self.batch_size:(idx+1)*self.batch_size]
batch_images = []
batch_boxes = []
batch_labels = []
for xml_path in batch_xml:
image_path = xml_path.replace('.xml', '.jpg')
image = cv2.imread(image_path)
boxes, labels = read_annotation(xml_path)
batch_images.append(image)
batch_boxes.append(boxes)
batch_labels.append(labels)
inputs = {
'image': np.array(batch_images)
}
outputs = {
'bbox': np.array(batch_boxes),
'label': np.array(batch_labels)
}
return inputs, outputs
# 定义模型
def build_model():
image_input = tf.keras.layers.Input(shape=(None, None, 3), name='image')
backbone = tf.keras.applications.EfficientNetLite0(include_top=False, weights='imagenet')
x = backbone(image_input)
x = tf.keras.layers.Conv2D(1280, kernel_size=1, padding='same', activation='relu')(x)
x = tf.keras.layers.Conv2D(256, kernel_size=1, padding='same', activation='relu')(x)
class_output = tf.keras.layers.Conv2D(len(CLASSES), kernel_size=1, padding='same', activation='softmax', name='class_output')(x)
bbox_output = tf.keras.layers.Conv2D(4, kernel_size=1, padding='same', name='bbox_output')(x)
model = tf.keras.models.Model(inputs=image_input, outputs=[class_output, bbox_output])
return model
# 训练模型
def train_model(xml_dir, epochs, steps_per_epoch, batch_size):
dataset = DetectionDataset(xml_dir, batch_size)
model = build_model()
optimizer = tf.keras.optimizers.Adam(learning_rate=0.001)
model.compile(optimizer=optimizer, loss=['sparse_categorical_crossentropy', 'mse'])
model.fit(dataset, epochs=epochs, steps_per_epoch=steps_per_epoch)
# 测试模型
def test_model(image_path, model_path):
model = tf.keras.models.load_model(model_path)
image = cv2.imread(image_path)
inputs = np.expand_dims(image, axis=0)
outputs = model.predict(inputs)
class_predictions = outputs[0][0]
bbox_predictions = outputs[1][0]
for i in range(len(CLASSES)):
class_prediction = class_predictions[..., i]
bbox_prediction = bbox_predictions[..., i]
class_indices = np.where(class_prediction > 0.5)
bboxes = bbox_prediction[class_indices]
for bbox in bboxes:
xmin, ymin, xmax, ymax = bbox
cv2.rectangle(image, (int(xmin), int(ymin)), (int(xmax), int(ymax)), (0, 255, 0), 2)
cv2.putText(image, CLASSES[i], (int(xmin), int(ymin)), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
cv2.imshow('result', image)
cv2.waitKey(0)
# 训练模型
train_model('path/to/xml/dir', epochs=10, steps_per_epoch=100, batch_size=8)
# 测试模型
test_model('path/to/image', 'path/to/model.h5')
```
其中,`read_annotation` 函数用于读取标注数据,`DetectionDataset` 类用于定义数据集,`build_model` 函数用于构建模型,`train_model` 函数用于训练模型,`test_model` 函数用于测试模型。在训练模型时,需要提供标注数据所在的目录,训练轮数,每轮训练步数和批次大小。在测试模型时,需要提供要测试的图片路径和训练好的模型路径。
阅读全文