neighbours = KNeighborsClassifier(n_neighbors=3)的意思
时间: 2024-04-03 08:31:33 浏览: 65
这段代码的意思是创建一个名为 "neighbours" 的变量,该变量是使用 scikit-learn 库中的 KNeighborsClassifier 类初始化的一个对象。KNeighborsClassifier 是一种机器学习算法,用于分类和回归任务。在此示例中,我们将 n_neighbors 参数设置为 3,这意味着在进行分类时将考虑每个样本的三个最近邻居。你可以根据自己的需要调整 n_neighbors 参数的值。
相关问题
neighbours = KNeighborsClassifier(n_neighbors=3) for i,k in enumerate(neighbours): knn=KNeighborsClassifier(n_neighbors=k,algorithm="kd_tree",n_job=-1) knn.fit(x_train,y_train.ravel()) train_accuracy[i] = knn.score(x_train,y_train.ravel()) test_accuracy[i] = knn.score(x_test,y_test.ravel())这段代码有什么问题
这段代码存在一些问题:
1. 变量 "neighbours" 的赋值没有给出完整的上下文。在示例代码中,"neighbours" 可能表示要尝试的不同的 K 值,但是没有提供完整的上下文来确保这个猜测。
2. 在 for 循环中使用 "neighbours" 变量,但是该变量没有被定义或初始化。这可能是由于上下文缺失而导致的。
3. 在 for 循环中,将 "neighbours" 变量的值解包到了 "i" 和 "k" 两个变量中,但是在下面的代码中并没有使用 "i" 变量。
4. 在使用 KNeighborsClassifier 初始化 knn 对象时,将 "n_neighbors" 参数设置为未定义的变量 "k",这可能会导致 NameError。
5. 在使用 knn 对象时,将 "n_job" 参数设置为 "-1",但是正确的参数名称是 "n_jobs"。
根据这些问题,我建议你检查并修改代码。如果你能够提供更多上下文或代码,我可以更好地帮助你。
def algorithm(draw, grid, start, end): count = 0 open_set = PriorityQueue() open_set.put((0, count, start)) came_from = {} g_score = {node: float("inf") for row in grid for node in row} g_score[start] = 0 f_score = {node: float("inf") for row in grid for node in row} f_score[start] = h(start.get_pos(), end.get_pos()) open_set_hash = {start} while not open_set.empty(): for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() current = open_set.get()[2] open_set_hash.remove(current) if current == end: reconstruct_path(came_from, end, draw) end.make_end() return True for neighbour in current.neighbours: temp_g_score = g_score[current] + 1 if temp_g_score < g_score[neighbour]: came_from[neighbour] = current g_score[neighbour] = temp_g_score f_score[neighbour] = temp_g_score + h(neighbour.get_pos(), end.get_pos()) if neighbour not in open_set_hash: count += 1 open_set.put((f_score[neighbour], count, neighbour)) open_set_hash.add(neighbour) neighbour.make_open() draw() if current != start: current.make_closed() return False解释这段代码
这段代码是实现 A* 算法的主要函数,输入参数包括绘图函数 draw、地图 grid、起点 start 和终点 end。在算法过程中,首先初始化一些变量,包括一个优先队列 open_set、一个字典 came_from、两个字典 g_score 和 f_score。open_set 用于保存待扩展节点,came_from 保存每个节点的前驱节点,g_score 和 f_score 分别表示从起点到每个节点的实际代价和估计代价。算法开始时将起点加入 open_set,然后不断从 open_set 中取出代价最小的节点进行扩展,扩展的过程中更新各个节点的代价和前驱节点,并将扩展出的节点加入 open_set,直到找到终点为止。如果找到了终点,则通过 came_from 字典回溯路径并绘制出路径;如果 open_set 已经空了但还没有找到终点,则说明不存在可行路径。其中,h() 函数是计算两个节点间的曼哈顿距离。整个函数的返回值为布尔值,表示是否找到了可行路径。
阅读全文