python 代码实现 用crf模型实现命名实体识别
时间: 2024-03-01 21:49:38 浏览: 126
lstm+crf、bilstm+crf 、LSTM CRF pytorch 命名实体识别代码
5星 · 资源好评率100%
使用Python实现CRF模型进行命名实体识别,可以使用sklearn-crfsuite这个Python包。下面是一个简单的例子:
```python
import sklearn_crfsuite
from sklearn_crfsuite import metrics
from sklearn.model_selection import train_test_split
# 加载数据
def load_data():
# 实现加载数据的逻辑,返回格式为[[[token1, label1], [token2, label2], ...], ...]
pass
# 特征提取
def word2features(sent, i):
word = sent[i][0]
features = {
'bias': 1.0,
'word.lower()': word.lower(),
'word[-3:]': word[-3:],
'word[-2:]': word[-2:],
'word.isupper()': word.isupper(),
'word.istitle()': word.istitle(),
'word.isdigit()': word.isdigit(),
}
if i > 0:
prev_word = sent[i-1][0]
features.update({
'-1:word.lower()': prev_word.lower(),
'-1:word.istitle()': prev_word.istitle(),
'-1:word.isupper()': prev_word.isupper(),
})
else:
features['BOS'] = True
if i < len(sent)-1:
next_word = sent[i+1][0]
features.update({
'+1:word.lower()': next_word.lower(),
'+1:word.istitle()': next_word.istitle(),
'+1:word.isupper()': next_word.isupper(),
})
else:
features['EOS'] = True
return features
def sent2features(sent):
return [word2features(sent, i) for i in range(len(sent))]
def sent2labels(sent):
return [label for token, label in sent]
def sent2tokens(sent):
return [token for token, label in sent]
# 加载数据
data = load_data()
# 特征提取
X = [sent2features(s) for s in data]
y = [sent2labels(s) for s in data]
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
# 训练模型
crf = sklearn_crfsuite.CRF(algorithm='lbfgs', c1=0.1, c2=0.1, max_iterations=100, all_possible_transitions=True)
crf.fit(X_train, y_train)
# 预测并评估
y_pred = crf.predict(X_test)
print(metrics.flat_classification_report(y_test, y_pred))
```
上面的代码中,我们首先定义了load_data函数来加载数据。这里我们假设数据格式为[[[token1, label1], [token2, label2], ...], ...]。接着,我们定义了特征提取函数word2features和sent2features,以及标签转换函数sent2labels和sent2tokens。然后,我们使用train_test_split函数将数据集划分为训练集和测试集。接着,我们使用sklearn_crfsuite包中的CRF类创建CRF模型,并使用fit函数训练模型。最后,我们使用predict函数对测试集进行预测,并使用flat_classification_report函数评估模型性能。
阅读全文