import wfdbimport numpy as npimport matplotlib.pyplot as pltfrom scipy import signal# 读取心电数据record = wfdb.rdrecord('D:/下载/ptb-xl-a-large-publicly-available-electrocardiography-dataset-1.0.3/records100/00000/00003_lr')# 获取心电信号ecg_signal = record.p_signal[:, 0]# 获取采样频率fs = record.fs# 获取时间轴t = np.arange(ecg_signal.size) / fs# 去除基线漂移ecg_detrend = signal.detrend(ecg_signal)# 定义滤波器b, a = signal.butter(4, 0.2, 'low')# 进行滤波ecg_filt = signal.filtfilt(b, a, ecg_detrend)# 绘制原始信号,滤波后的信号以及去除基线漂移后的信号plt.figure(figsize=(12, 6))plt.subplot(3, 1, 1)plt.plot(t, ecg_signal, 'b')plt.title('Original Signal')plt.xlabel('Time (s)')plt.ylabel('Amplitude (mV)')plt.subplot(3, 1, 2)plt.plot(t, ecg_filt, 'r')plt.title('Filtered Signal')plt.xlabel('Time (s)')plt.ylabel('Amplitude (mV)')plt.subplot(3, 1, 3)plt.plot(t, ecg_detrend, 'g')plt.title('Detrended Signal')plt.xlabel('Time (s)')plt.ylabel('Amplitude (mV)')plt.tight_layout()plt.show()请在这段代码的基础上加上绘制去除基线漂移并滤波后的图像
时间: 2023-12-26 07:05:33 浏览: 111
import numpy as np import matplotlib.pyplot as plt import math
好的,你可以在代码的基础上加上以下代码来绘制去除基线漂移并滤波后的信号:
```python
ecg_detrend_filt = signal.filtfilt(b, a, ecg_detrend)
plt.figure(figsize=(8, 4))
plt.plot(t, ecg_detrend_filt, 'k')
plt.title('Detrended and Filtered Signal')
plt.xlabel('Time (s)')
plt.ylabel('Amplitude (mV)')
plt.show()
```
完整代码如下:
```python
import wfdb
import numpy as np
import matplotlib.pyplot as plt
from scipy import signal
# 读取心电数据
record = wfdb.rdrecord('D:/下载/ptb-xl-a-large-publicly-available-electrocardiography-dataset-1.0.3/records100/00000/00003_lr')
# 获取心电信号
ecg_signal = record.p_signal[:, 0]
# 获取采样频率
fs = record.fs
# 获取时间轴
t = np.arange(ecg_signal.size) / fs
# 去除基线漂移
ecg_detrend = signal.detrend(ecg_signal)
# 定义滤波器
b, a = signal.butter(4, 0.2, 'low')
# 进行滤波
ecg_filt = signal.filtfilt(b, a, ecg_detrend)
# 绘制原始信号,滤波后的信号以及去除基线漂移后的信号
plt.figure(figsize=(12, 6))
plt.subplot(3, 1, 1)
plt.plot(t, ecg_signal, 'b')
plt.title('Original Signal')
plt.xlabel('Time (s)')
plt.ylabel('Amplitude (mV)')
plt.subplot(3, 1, 2)
plt.plot(t, ecg_filt, 'r')
plt.title('Filtered Signal')
plt.xlabel('Time (s)')
plt.ylabel('Amplitude (mV)')
plt.subplot(3, 1, 3)
plt.plot(t, ecg_detrend, 'g')
plt.title('Detrended Signal')
plt.xlabel('Time (s)')
plt.ylabel('Amplitude (mV)')
plt.tight_layout()
plt.show()
# 绘制去除基线漂移并滤波后的信号
ecg_detrend_filt = signal.filtfilt(b, a, ecg_detrend)
plt.figure(figsize=(8, 4))
plt.plot(t, ecg_detrend_filt, 'k')
plt.title('Detrended and Filtered Signal')
plt.xlabel('Time (s)')
plt.ylabel('Amplitude (mV)')
plt.show()
```
运行后,应该会显示出三个图像。第一个图像是原始信号,第二个图像是滤波后的信号,第三个图像是去除基线漂移后的信号。第四个图像是去除基线漂移并滤波后的信号。
阅读全文