更换贝叶斯线性回归和非线性回归数据的python
时间: 2024-02-15 15:01:42 浏览: 96
更换贝叶斯线性回归和非线性回归数据的Python代码如下所示:
贝叶斯线性回归数据:
```python
import numpy as np
from sklearn.datasets import make_regression
from sklearn.model_selection import train_test_split
from sklearn.linear_model import BayesianRidge
# 生成数据集
X, y = make_regression(n_samples=100, n_features=10, noise=0.1, random_state=42)
# 训练集和测试集分割
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 创建贝叶斯线性回归模型
model = BayesianRidge()
# 拟合模型
model.fit(X_train, y_train)
# 预测模型
y_pred = model.predict(X_test)
```
非线性回归数据:
```python
import numpy as np
from sklearn.datasets import make_friedman1
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestRegressor
# 生成数据集
X, y = make_friedman1(n_samples=100, n_features=5, noise=0.1, random_state=42)
# 训练集和测试集分割
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 创建随机森林回归模型
model = RandomForestRegressor()
# 拟合模型
model.fit(X_train, y_train)
# 预测模型
y_pred = model.predict(X_test)
```
以上是更换贝叶斯线性回归和非线性回归数据的Python代码,可以根据需要进行修改。
阅读全文