set.seed(1234)括号中的数字怎么取
时间: 2024-04-11 12:33:11 浏览: 56
括号中的数字可以是任意整数值。这个数字被称为“随机种子”(random seed),它在随机数生成器中起到一个起始点的作用。使用相同的随机种子,可以确保每次运行程序时生成的随机数序列都是相同的。这在需要重现实验结果或者调试代码时非常有用。通常来说,你可以任意选择一个整数值作为随机种子,只要保证在同一程序中使用相同的种子就可以了。
相关问题
在进行以下代码时:# 50*30, 30个变量 set.seed(1) X = matrix(rnorm(1500), nrow = 50, ncol = 30) Y = rnorm(50) data = data.frame(Y, X) # 原始模型为线性,给出三组不同的原始模型系数 lm.fit1 = lm(Y ~ X[,1], data = data) lm.fit2 = lm(Y ~ X[,1:15], data = data) lm.fit3 = lm(Y ~ X, data = data) # 计算CV值 library(boot) cv.error1 = cv.glm(data[,c("Y", "X[,1]")], lm.fit1)$delta[1] cv.error2 = cv.glm(data[,c("Y", paste0("X[,",1:15,"]"))], lm.fit2)$delta[1] cv.error3 = cv.glm(data[,c("Y", paste0("X[,",1:30,"]"))], lm.fit3)$delta[1]。出现了以下错误:Error in [.data.frame(data, , c("Y", "X[,1]")) : 选择了未定义的列。请对原代码进行修改
在计算CV值时,需要将X的列名改为字符串形式,使用字符串拼接函数paste0时需要在括号外加引号,修改后的代码如下:
```
library(boot)
cv.error1 = cv.glm(data[,c("Y", "X[,1]")], lm.fit1)$delta[1]
cv.error2 = cv.glm(data[,c("Y", paste0("X[,",1:15,"]"))], lm.fit2)$delta[1]
cv.error3 = cv.glm(data[,c("Y", paste0("X[,",1:30,"]"))], lm.fit3)$delta[1]
```
TypeError Traceback (most recent call last) /tmp/ipykernel_1045/245448921.py in <module> 1 dataset_path = ABSADatasetList.Restaurant14 ----> 2 sent_classifier = Trainer(config=apc_config_english, 3 dataset=dataset_path, # train set and test set will be automatically detected 4 checkpoint_save_mode=1, # =None to avoid save model 5 auto_device=True # automatic choose CUDA or CPU /tmp/ipykernel_1045/296492999.py in __init__(self, config, dataset, from_checkpoint, checkpoint_save_mode, auto_device) 84 config.model_path_to_save = None 85 ---> 86 self.train() 87 88 def train(self): /tmp/ipykernel_1045/296492999.py in train(self) 96 config.seed = s 97 if self.checkpoint_save_mode: ---> 98 model_path.append(self.train_func(config, self.from_checkpoint, self.logger)) 99 else: 100 # always return the last trained model if dont save trained model /tmp/ipykernel_1045/4269211813.py in train4apc(opt, from_checkpoint_path, logger) 494 load_checkpoint(trainer, from_checkpoint_path) 495 --> 496 return trainer.run() /tmp/ipykernel_1045/4269211813.py in run(self) 466 criterion = nn.CrossEntropyLoss() 467 self._reset_params() --> 468 return self._train(criterion) 469 470 /tmp/ipykernel_1045/4269211813.py in _train(self, criterion) 153 return self._k_fold_train_and_evaluate(criterion) 154 else: --> 155 return self._train_and_evaluate(criterion) 156 157 def _train_and_evaluate(self, criterion): /tmp/ipykernel_1045/4269211813.py in _train_and_evaluate(self, criterion) 190 191 for epoch in range(self.opt.num_epoch): --> 192 iterator = tqdm(self.train_dataloaders[0]) 193 for i_batch, sample_batched in enumerate(iterator): 194 global_step += 1 TypeError: 'module' object is not callable
这个错误通常是由于在代码中使用了模块对象而不是可调用的函数或类。在这个特定的代码片段中,`Trainer` 类或 `tqdm` 函数可能没有正确导入或没有被正确调用。
要解决这个问题,你可以尝试以下几个方法:
1. 检查导入语句:确保你已经正确导入了 `Trainer` 类和 `tqdm` 函数。比如,检查是否使用了正确的导入语句,如 `from module import Trainer` 或 `import module`。确保模块名称和导入语句中的名称匹配。
2. 检查模块的安装:确保你已经正确安装了 `Trainer` 类所在的模块。使用命令 `pip install module` 来安装缺失的模块。
3. 检查函数调用:确保你正确调用了 `Trainer` 类和 `tqdm` 函数。检查函数名是否正确拼写,并确保在调用函数时没有遗漏括号或传递错误的参数。
4. 检查模块对象:如果你尝试调用的是一个模块对象(例如 `Trainer` 或 `tqdm`),而不是一个函数或类,那么你需要检查代码逻辑,确定你希望调用的是哪个函数或类,并使用正确的方式进行调用。
希望这些方法能帮助你解决问题!如果还有其他问题,请随时提问。
阅读全文