Traceback (most recent call last): File "D:\Anaconda\lib\site-packages\IPython\core\interactiveshell.py", line 3369, in run_code exec(code_obj, self.user_global_ns, self.user_ns) File "<ipython-input-7-079848560b19>", line 2, in <cell line: 2> import torch.nn as nn File "D:\Pycharm\PyCharm Community Edition 2022.1.3\plugins\python-ce\helpers\pydev\_pydev_bundle\pydev_import_hook.py", line 21, in do_import module = self._system_import(name, *args, **kwargs) File "D:\Anaconda\lib\site-packages\torch\__init__.py", line 124, in <module> raise err OSError: [WinError 127] 找不到指定的程序。 Error loading "D:\Anaconda\lib\site-packages\torch\lib\c10_cuda.dll" or one of its dependencies.
时间: 2023-07-21 09:01:27 浏览: 123
这个错误通常是由于缺少CUDA库或CUDA驱动程序引起的。请确保您已正确安装了CUDA以及与您的PyTorch版本兼容的CUDA版本。您可以尝试以下解决方法:
1. 检查CUDA和PyTorch版本是否兼容。确保您的PyTorch版本与您的CUDA版本匹配。您可以在PyTorch官方网站上查找版本兼容性矩阵。
2. 检查CUDA是否正确安装。请确保您已正确安装了CUDA,并且CUDA的路径已添加到您的系统环境变量中。
3. 检查CUDA驱动程序是否正确安装。请确保您已正确安装了与您的CUDA版本匹配的驱动程序。
4. 如果您不需要使用CUDA,可以尝试使用CPU版本的PyTorch。您可以使用以下命令安装CPU版本的PyTorch:
```
pip install torch==1.9.0+cpu -f https://download.pytorch.org/whl/torch_stable.html
```
请注意,这将只安装CPU版本的PyTorch,不会使用GPU加速。
如果上述解决方法都无效,建议您查阅相关文档或在相关论坛上寻求帮助,以获取更详细的支持。
相关问题
Traceback (most recent call last): File "D:\anaconda\lib\site-packages\IPython\core\interactiveshell.py", line 3460, in run_code exec(code_obj, self.user_global_ns, self.user_ns) File "<ipython-input-3-de046003dae8>", line 4, in <module> model = torch.load('D://大乐透5.h5') File "D:\anaconda\lib\site-packages\torch\serialization.py", line 713, in load return _legacy_load(opened_file, map_location, pickle_module, **pickle_load_args) File "D:\anaconda\lib\site-packages\torch\serialization.py", line 920, in _legacy_load magic_number = pickle_module.load(f, **pickle_load_args) _pickle.UnpicklingError: invalid load key, 'H'.
这个错误发生的原因是你正在尝试使用 PyTorch 中的 `torch.load()` 函数来加载一个 Keras 模型文件。Keras 模型文件通常是以 ".h5" 为扩展名,而 PyTorch 使用的默认扩展名是 ".pth" 或 ".pt"。
如果你要加载 Keras 模型文件,应该使用 Keras 中提供的函数,例如 `keras.models.load_model()`。示例代码如下:
```python
import keras
# 加载 Keras 模型
model = keras.models.load_model('D://大乐透5.h5')
# 查看模型结构
print(model.summary())
# 修改模型结构
model.layers.pop() # 删除最后一层
model.add(keras.layers.Dense(10, activation='softmax')) # 添加一个新的输出层
# 保存修改后的模型
model.save('modified_model.h5')
```
这里的代码假设你已经有一个名为 `D://大乐透5.h5` 的 Keras 模型文件。你可以使用 `model.summary()` 函数查看模型结构。这里的代码将删除模型的最后一层,并添加一个新的输出层,最后将修改后的模型保存为 `modified_model.h5`。
Traceback (most recent call last): File "D:\ANACONDA3\lib\site-packages\IPython\core\interactiveshell.py", line 3505, in run_code exec(code_obj, self.user_global_ns, self.user_ns) File "<ipython-input-20-10043336366a>", line 52, in <module> model.fit(train_data, train_labels, epochs=10, batch_size=32) File "D:\ANACONDA3\lib\site-packages\keras\utils\traceback_utils.py", line 70, in error_handler raise e.with_traceback(filtered_tb) from None File "C:\Users\CXY\AppData\Local\Temp\__autograph_generated_filej56unrey.py", line 15, in tf__train_function retval_ = ag__.converted_call(ag__.ld(step_function), (ag__.ld(self), ag__.ld(iterator)), None, fscope) ValueError: in user code: File "D:\ANACONDA3\lib\site-packages\keras\engine\training.py", line 1160, in train_function * return step_function(self, iterator) File "D:\ANACONDA3\lib\site-packages\keras\engine\training.py", line 1146, in step_function ** outputs = model.distribute_strategy.run(run_step, args=(data,)) File "D:\ANACONDA3\lib\site-packages\keras\engine\training.py", line 1135, in run_step ** outputs = model.train_step(data) File "D:\ANACONDA3\lib\site-packages\keras\engine\training.py", line 993, in train_step y_pred = self(x, training=True) File "D:\ANACONDA3\lib\site-packages\keras\utils\traceback_utils.py", line 70, in error_handler raise e.with_traceback(filtered_tb) from None File "D:\ANACONDA3\lib\site-packages\keras\engine\input_spec.py", line 295, in assert_input_compatibility raise ValueError( ValueError: Input 0 of layer "sequential_3" is incompatible with the layer: expected shape=(None, 32, 32, 3), found shape=(None, 80, 160, 3)
这个错误是由于在模型的输入层中指定的形状与实际提供的数据形状不匹配导致的模型的输入层期望是一个形状为(None, 32, 32, 3)的张量,但实际提供的数据形状是(None, 80, 160, 3)。
你可以尝试调整输入数据的形状,使其与模型的期望输入形状匹配。或者,你可以修改模型的输入层,使其适应提供的数据形状。这取决于你的具体需求和数据。
如果你需要进一步的帮助,请提供更多关于你的模型和数据的信息,我将尽力提供更准确的解决方案。
阅读全文