二值化图片小区域去除C++代码

时间: 2023-05-27 11:02:53 浏览: 82
我假设你已经有了用于二值化图像的代码,并且你知道如何使用开操作来去除小的连通区域。 此外,下面的代码还需要一个函数,该函数使用ConnectedComponentsWithStats函数来获取每个连通区域的大小和位置。该函数的定义如下所示: ```cpp void findConnectedComponents(cv::Mat& binaryImg, std::vector<cv::Rect>& rois) { cv::Mat labels, stats, centroids; int numLabels = cv::connectedComponentsWithStats(binaryImg, labels, stats, centroids); for (int i = 1; i < numLabels; i++) { if (stats.at<int>(i, cv::CC_STAT_AREA) < 100) { //change the area value as needed //ignore regions smaller than the given area continue; } int left = stats.at<int>(i, cv::CC_STAT_LEFT); int top = stats.at<int>(i, cv::CC_STAT_TOP); int width = stats.at<int>(i, cv::CC_STAT_WIDTH); int height = stats.at<int>(i, cv::CC_STAT_HEIGHT); rois.push_back(cv::Rect(left, top, width, height)); } } ``` 接下来,我们需要在二值化的图像上应用一个开操作,以去除小区域。 ```cpp cv::Mat img = cv::imread("binary_img.png", cv::IMREAD_GRAYSCALE); cv::Mat kernel = cv::getStructuringElement(cv::MORPH_RECT, cv::Size(3, 3)); cv::Mat opened; cv::morphologyEx(img, opened, cv::MORPH_OPEN, kernel); std::vector<cv::Rect> rois; findConnectedComponents(opened, rois); cv::Mat result = cv::Mat::zeros(img.size(), CV_8UC1); for (int i = 0; i < rois.size(); i++) { cv::Mat roi = opened(rois[i]); roi.copyTo(result(rois[i])); } cv::imshow("Result", result); cv::waitKey(); ``` 上述代码将打开一个名为“binary_img.png”的图像,并使用大小为3x3的矩形核对其应用开操作。然后,它将使用我们上面定义的函数查找小于给定大小(在此为100个像素)的每个连通区域。最后,它将在结果图像中为每个保留的区域创建一个矩形。

相关推荐

Opencv c++代码实现分水岭分割算法,并将其用于下面图像分割,其算法:(1)先使用 Otsu's 二值化对图像进行二值化 (2)使用开运算去除图像中的细小白色噪点 (3)通过距离变换来确定前景图像 (4)可以看到硬币的中心像素值最大(中心离背景像素最远)。对其进行二值处理就得到了分离的前景图。 (5)通过膨胀运算,使得一部分背景成为了物体到的边界,得到的图像中的黑色区域肯定是真实背景。 (6)使用膨胀图减去前景图,得到不确定区域,这部分区域不确定是硬币还是背景,这些区域通常在前景和背景接触的区域(或者两个不同硬币接触的区域),称之为边界。通过分水岭算法应该能找到确定的边界。 (7)现在可以确定哪些是硬币区域,哪些是背景区域。然后需要创建标记(marker,它是一个与原始图像大小相同的矩阵,int32数据类型),表示其中的每个区域。分水岭算法将标记的0的区域视为不确定区域,将标记为1的区域视为背景区域,将标记大于1的正整数表示我们想得到的前景。 (8)可以使用 connectedComponents() 来实现这个功能,它是用0标记图像的背景,用大于0的整数标记其他对象。但是OpenCV的分水岭分割函数,会用0表示不确定区域,所以需要对标记统一加一,然后将上一步计算的不确定区域部分标记为0. (9)现在可以调用watershed函数分割图像,如下: watershed(src, markers); (10)maker中标记为-1的地方就是分界线,makers中的最大值减1就是统计的个数。

最新推荐

recommend-type

基于springboot+vue+MySQL实现的在线考试系统+源代码+文档

web期末作业设计网页 基于springboot+vue+MySQL实现的在线考试系统+源代码+文档
recommend-type

318_面向物联网机器视觉的目标跟踪方法设计与实现的详细信息-源码.zip

提供的源码资源涵盖了安卓应用、小程序、Python应用和Java应用等多个领域,每个领域都包含了丰富的实例和项目。这些源码都是基于各自平台的最新技术和标准编写,确保了在对应环境下能够无缝运行。同时,源码中配备了详细的注释和文档,帮助用户快速理解代码结构和实现逻辑。 适用人群: 这些源码资源特别适合大学生群体。无论你是计算机相关专业的学生,还是对其他领域编程感兴趣的学生,这些资源都能为你提供宝贵的学习和实践机会。通过学习和运行这些源码,你可以掌握各平台开发的基础知识,提升编程能力和项目实战经验。 使用场景及目标: 在学习阶段,你可以利用这些源码资源进行课程实践、课外项目或毕业设计。通过分析和运行源码,你将深入了解各平台开发的技术细节和最佳实践,逐步培养起自己的项目开发和问题解决能力。此外,在求职或创业过程中,具备跨平台开发能力的大学生将更具竞争力。 其他说明: 为了确保源码资源的可运行性和易用性,特别注意了以下几点:首先,每份源码都提供了详细的运行环境和依赖说明,确保用户能够轻松搭建起开发环境;其次,源码中的注释和文档都非常完善,方便用户快速上手和理解代码;最后,我会定期更新这些源码资源,以适应各平台技术的最新发展和市场需求。
recommend-type

FPGA Verilog 计算信号频率,基础时钟100Mhz,通过锁相环ip核生成200Mhz检测时钟,误差在10ns

结合等精度测量原理和原理示意图可得:被测时钟信号的时钟频率fx的相对误差与被测时钟信号无关;增大“软件闸门”的有效范围或者提高“标准时钟信号”的时钟频率fs,可以减小误差,提高测量精度。 实际闸门下被测时钟信号周期数为X,设被测信号时钟周期为Tfx,它的时钟频率fx = 1/Tfx,由此可得等式:X * Tfx = X / fx = Tx(实际闸门)。 其次,将两等式结合得到只包含各自时钟周期计数和时钟频率的等式:X / fx = Y / fs = Tx(实际闸门),等式变换,得到被测时钟信号时钟频率计算公式:fx = X * fs / Y。 最后,将已知量标准时钟信号时钟频率fs和测量量X、Y带入计算公式,得到被测时钟信号时钟频率fx。
recommend-type

校园二手商品交易系统三.wmv

校园二手商品交易系统三.wmv
recommend-type

基于Spring Security的OAuth2.1和OIDC1.0认证服务器设计源码

本源码提供了一个基于Spring Security框架的OAuth2.1和OIDC1.0认证服务器实现。项目包含102个文件,主要使用Java(51个文件)、JSP(12个文件)、XML(10个文件)、HTML(9个文件)等编程语言和标记语言开发。此外,还包括了properties、txt、ddl、css、ico等格式的文件。这个认证服务器项目旨在实现现代的身份验证和授权机制,支持OAuth 2.1和OpenID Connect 1.0协议,适用于需要在应用程序中实现安全认证的开发者。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

hive中 的Metastore

Hive中的Metastore是一个关键的组件,它用于存储和管理Hive中的元数据。这些元数据包括表名、列名、表的数据类型、分区信息、表的存储位置等信息。Hive的查询和分析都需要Metastore来管理和访问这些元数据。 Metastore可以使用不同的后端存储来存储元数据,例如MySQL、PostgreSQL、Oracle等关系型数据库,或者Hadoop分布式文件系统中的HDFS。Metastore还提供了API,使得开发人员可以通过编程方式访问元数据。 Metastore的另一个重要功能是跟踪表的版本和历史。当用户对表进行更改时,Metastore会记录这些更改,并且可以让用户回滚到
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。