单头自注意力机制代码
时间: 2023-11-29 08:43:42 浏览: 167
单头自注意力机制是Transformer模型中的一种注意力机制,它可以用于自然语言处理任务中的编码器和解码器。下面是单头自注意力机制的代码实现:
```python
import torch
import torch.nn as nn
class SelfAttention(nn.Module):
def __init__(self, embed_size, heads):
super(SelfAttention, self).__init__()
self.embed_size = embed_size
self.heads = heads
self.head_dim = embed_size // heads
assert (self.head_dim * heads == embed_size), "Embed size needs to be divisible by heads"
self.values = nn.Linear(self.head_dim, self.head_dim, bias=False)
self.keys = nn.Linear(self.head_dim, self.head_dim, bias=False)
self.queries = nn.Linear(self.head_dim, self.head_dim, bias=False)
self.fc_out = nn.Linear(heads*self.head_dim, embed_size)
def forward(self, values, keys, query, mask):
N = query.shape[0]
value_len, key_len, query_len = values.shape[1], keys.shape[1], query.shape[1]
# Split embedding into self.heads pieces
values = values.reshape(N, value_len, self.heads, self.head_dim)
keys = keys.reshape(N, key_len, self.heads, self.head_dim)
query = query.reshape(N, query_len, self.heads, self.head_dim)
values = self.values(values) # (N, value_len, heads, head_dim)
keys = self.keys(keys) # (N, key_len, heads, head_dim)
queries = self.queries(query) # (N, query_len, heads, head_dim)
energy = torch.einsum("nqhd,nkhd->nhqk", [queries, keys]) # (N, heads, query_len, key_len)
if mask is not None:
energy = energy.masked_fill(mask == 0, float("-1e20"))
attention = torch.softmax(energy / (self.embed_size ** (1/2)), dim=3) # (N, heads, query_len, key_len)
out = torch.einsum("nhql,nlhd->nqhd", [attention, values]).reshape(N, query_len, self.heads*self.head_dim)
out = self.fc_out(out)
return out
```
其中,`embed_size`表示嵌入向量的维度,`heads`表示注意力头的数量。在`__init__`函数中,我们定义了三个线性层,分别用于计算values、keys和queries。在`forward`函数中,我们首先将输入的values、keys和query分别拆分成`heads`个部分,然后对它们进行线性变换。接着,我们计算注意力分数,并使用softmax函数进行归一化。最后,我们将注意力分数与values相乘,得到最终的输出。
阅读全文