HoughCircles在python中的调用
时间: 2024-01-18 09:15:12 浏览: 129
HoughCircles是OpenCV中用于检测圆形的函数,可以通过以下代码调用:
```python
import cv2
img = cv2.imread('image.jpg', 0)
circles = cv2.HoughCircles(img, cv2.HOUGH_GRADIENT, 1, 20, param1=50, param2=30, minRadius=0, maxRadius=0)
if circles is not None:
circles = np.round(circles[0, :]).astype("int")
for (x, y, r) in circles:
cv2.circle(img, (x, y), r, (0, 255, 0), 2)
cv2.imshow("output", img)
cv2.waitKey(0)
```
其中,第一个参数是输入图像,第二个参数是检测方法,第三个参数是图像分辨率与半径的比值,第四个参数是圆心之间的最小距离,param1和param2是Canny边缘检测器的阈值,minRadius和maxRadius是圆的最小和最大半径。
相关问题
不调用python库中成熟的算法编写hough变换算法
Hough变换算法是一种图像处理算法,可以用于检测图像中的直线和圆。它的基本思想是将图像中的每个像素点都映射到一个参数空间中,在这个参数空间中,每个参数都代表一条直线或一个圆。通过对参数空间进行统计分析,可以找到在原始图像中的直线或圆。
以下是一种简单的Hough变换算法的实现:
1. 将图像转换为二值图像
2. 对于每个白色像素点,在参数空间中枚举所有可能的直线或圆,并将其投影到参数空间中
3. 统计参数空间中每个参数的投票数,找到投票数最高的参数,即为最有可能的直线或圆
4. 在原始图像中绘制检测到的直线或圆
以下是Python代码实现:
```python
import numpy as np
import cv2
def hough_line(img):
# Convert the image to grayscale
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
# Apply Canny edge detection
edges = cv2.Canny(gray,50,200,apertureSize = 3)
# Define the Hough transform parameters
rho = 1 # distance resolution in pixels of the Hough grid
theta = np.pi/180 # angular resolution in radians of the Hough grid
threshold = 50 # minimum number of votes (intersections in Hough grid cell)
min_line_length = 100 # minimum number of pixels making up a line
max_line_gap = 10 # maximum gap in pixels between connectable line segments
# Run Hough on edge detected image
lines = cv2.HoughLinesP(edges,rho,theta,threshold,np.array([]),min_line_length,max_line_gap)
# Draw lines on the original image
for line in lines:
x1,y1,x2,y2 = line[0]
cv2.line(img,(x1,y1),(x2,y2),(0,255,0),2)
# Return the original image with the detected lines
return img
def hough_circle(img):
# Convert the image to grayscale
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
# Apply Gaussian blur to reduce noise
blur = cv2.GaussianBlur(gray,(5,5),0)
# Apply HoughCircles transform
circles = cv2.HoughCircles(blur,cv2.HOUGH_GRADIENT,1,20,param1=50,param2=30,minRadius=0,maxRadius=0)
# Draw circles on the original image
if circles is not None:
circles = np.round(circles[0,:]).astype("int")
for (x,y,r) in circles:
cv2.circle(img,(x,y),r,(0,255,0),2)
# Return the original image with the detected circles
return img
# Load an image
img = cv2.imread('image.jpg')
# Apply Hough line transform
img_lines = hough_line(img)
# Apply Hough circle transform
img_circles = hough_circle(img)
# Display the original image and the detected lines and circles
cv2.imshow('Original',img)
cv2.imshow('Lines',img_lines)
cv2.imshow('Circles',img_circles)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
这段代码实现了对图像中的直线和圆的检测,并在原始图像中绘制了检测到的直线和圆。这个实现虽然简单,但是对于复杂的图像,可能无法得到准确的检测结果。因此,在实际应用中,通常需要使用更加复杂的算法来实现Hough变换。
写一个找到图片中物体轮廓的曲率突变的点坐标的python程序,调用opencv
在Python中,使用OpenCV库可以方便地处理图像并找出物体轮廓的曲率突变点。下面是一个简单的示例,展示了如何使用`cv2.findContours`函数获取轮廓,并通过霍夫圆检测算法计算曲线的弧度变化,从而定位到突变点:
```python
import cv2
import numpy as np
def find_contour_curve_points(image_path):
# 读取图像
image = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)
# 高斯模糊有助于边缘检测
blurred_image = cv2.GaussianBlur(image, (5, 5), 0)
# 转换为二值图像
_, thresholded = cv2.threshold(blurred_image, 127, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
# 寻找轮廓
contours, _ = cv2.findContours(thresholded, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
if contours:
for contour in contours:
# 计算轮廓的外接矩形
x, y, w, h = cv2.boundingRect(contour)
# 提取轮廓像素
contour_image = thresholded[y:y+h, x:x+w]
# 使用霍夫圆变换寻找可能的圆心点
circles = cv2.HoughCircles(contour_image, cv2.HOUGH_GRADIENT, dp=1, minDist=20, param1=50, param2=30, minRadius=0, maxRadius=0)
# 如果找到圆形,检查相邻像素的弧度差异
if circles is not None:
circles = np.round(circles[0, :]).astype("int")
for (x, y, r) in circles:
center = (x + x, y + y)
# 计算周围像素的弧度差
neighbors = contour_image[max(0, y-r):min(y+r+1, h), max(0, x-r):min(x+r+1, w)]
angles = np.arctan2(neighbors[1:] - neighbors[:-1], neighbors[1:, 0] - neighbors[:-1, 0])
# 可能的突变点即弧度差显著的位置
curvature_derivative = np.abs(np.diff(angles))
peak_positions = np.where(curvature_derivative > np.mean(curvature_derivative) * 0.8)[0]
peak_positions += x - r # 将像素坐标转换回原始图像位置
yield center, peak_positions
else:
print(f"No contours found in the image at {image_path}")
# 使用函数
for point_info in find_contour_curve_points('your_image_path.jpg'):
print(f"Detected curve change point: ({point_info[0][0]}, {point_info[0][1]}), neighboring peaks: {point_info[1]}")
阅读全文