for i in range(self.stage_num): self.layers.append(BasicLayer(dim=embed_dims[i], depth=depths[i], net_depth=net_depth, kernel_size=kernel_size, conv_layer=conv_layer, norm_layer=norm_layer, gate_act=gate_act))解释每一段代码
时间: 2023-03-25 13:01:18 浏览: 128
这段代码是一个循环语句,其中self.stage_num是循环的次数。在每次循环中,会调用BasicLayer类,并将其实例化为一个对象,该对象的各个属性值由参数指定。具体来说,dim表示嵌入维度,depth表示层数,net_depth表示网络深度,kernel_size表示卷积核大小,conv_layer表示卷积层类型,norm_layer表示归一化层类型,gate_act表示门控激活函数类型。每次循环结束后,将该对象添加到layers列表中。
相关问题
for i in range(len(depths)): layers = [] dpr = dprs[sum(depths[:i]):sum(depths[:i + 1])] for j in range(depths[i]): if j == 0: stride, has_skip, attn_s, exp_ratio = 2, False, False, exp_ratios[i] * 2 else: stride, has_skip, attn_s, exp_ratio = 1, True, attn_ss[i], exp_ratios[i] layers.append(iRMB( emb_dim_pre, embed_dims[i], norm_in=True, has_skip=has_skip, exp_ratio=exp_ratio, norm_layer=norm_layers[i], act_layer=act_layers[i], v_proj=True, dw_ks=dw_kss[i], stride=stride, dilation=1, se_ratio=se_ratios[i], dim_head=dim_heads[i], window_size=window_sizes[i], attn_s=attn_s, qkv_bias=qkv_bias, attn_drop=attn_drop, drop=drop, drop_path=dpr[j], v_group=v_group, attn_pre=attn_pre )) emb_dim_pre = embed_dims[i] self.__setattr__(f'stage{i + 1}', nn.ModuleList(layers)) self.norm = get_norm(norm_layers[-1])(embed_dims[-1]) self.apply(self._init_weights) self.channel = [i.size(1) for i in self.forward(torch.randn(1, 3, 640, 640))]
这段代码是一个神经网络模型的定义,其中包含了多个iRMB层。每个iRMB层都有不同的输入和输出维度,以及不同的超参数和正则化方式。在代码中,使用了循环来依次添加每个iRMB层,并且将它们放入不同的stage中。最后,使用了一个正则化层对模型的输出进行规范化,并且使用apply函数初始化权重。最后一行代码用于获取每个stage的输出通道数。
分别构建RNN模型和LSTM模型实现机器作诗,并用模型编写跟自己姓名相关的藏头诗。包括以下步骤: 1.对数据集进行分析和预处理 2.分别构建RNN模型和LSTM模型进行训练 3.分别用两种模型编写跟自己姓名相关的藏头诗
好的,下面我们将按照您提供的步骤来完成任务。假设您的姓名是“李华”。
### 1. 数据集分析和预处理
#### 数据集分析
- **文件名**: `poems_clean.txt`
- **文件类型**: `txt`
- **内容**: 包含了大量的古代诗歌,每首诗分行存储。
#### 数据预处理
1. **读取数据**:
```python
with open('poems_clean.txt', 'r', encoding='utf-8') as file:
poems = file.readlines()
```
2. **清洗数据**:
- 去除空白行
- 去除标点符号
- 将所有字符转换为小写(如果需要)
```python
import re
def clean_poem(poem):
poem = re.sub(r'[^\w\s]', '', poem) # 去除标点符号
poem = poem.strip() # 去除前后空白
return poem.lower()
cleaned_poems = [clean_poem(poem) for poem in poems if poem.strip()]
```
3. **构建词汇表**:
```python
from collections import Counter
all_chars = ''.join(cleaned_poems)
char_freq = Counter(all_chars)
vocab = sorted(char_freq, key=char_freq.get, reverse=True)
char_to_idx = {char: idx for idx, char in enumerate(vocab)}
idx_to_char = {idx: char for idx, char in enumerate(vocab)}
```
4. **序列化诗歌**:
```python
def poem_to_indices(poem, char_to_idx):
return [char_to_idx[char] for char in poem]
sequences = [poem_to_indices(poem, char_to_idx) for poem in cleaned_poems]
```
### 2. 构建RNN模型和LSTM模型进行训练
#### RNN模型
```python
import torch
import torch.nn as nn
from torch.utils.data import DataLoader, Dataset
class PoemDataset(Dataset):
def __init__(self, sequences, seq_length=50):
self.sequences = sequences
self.seq_length = seq_length
def __len__(self):
return len(self.sequences)
def __getitem__(self, index):
sequence = self.sequences[index]
input_seq = sequence[:self.seq_length]
target_seq = sequence[1:self.seq_length + 1]
return torch.tensor(input_seq), torch.tensor(target_seq)
class SimpleRNN(nn.Module):
def __init__(self, vocab_size, embed_dim, hidden_dim, num_layers):
super(SimpleRNN, self).__init__()
self.embedding = nn.Embedding(vocab_size, embed_dim)
self.rnn = nn.RNN(embed_dim, hidden_dim, num_layers, batch_first=True)
self.fc = nn.Linear(hidden_dim, vocab_size)
def forward(self, x, h0=None):
out = self.embedding(x)
out, _ = self.rnn(out, h0)
out = self.fc(out)
return out
# 参数设置
vocab_size = len(vocab)
embed_dim = 256
hidden_dim = 512
num_layers = 2
seq_length = 50
batch_size = 64
epochs = 10
# 创建数据集和数据加载器
dataset = PoemDataset(sequences, seq_length)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
# 初始化模型、损失函数和优化器
model = SimpleRNN(vocab_size, embed_dim, hidden_dim, num_layers)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
# 训练模型
for epoch in range(epochs):
for inputs, targets in dataloader:
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs.view(-1, vocab_size), targets.view(-1))
loss.backward()
optimizer.step()
print(f'Epoch [{epoch+1}/{epochs}], Loss: {loss.item():.4f}')
```
#### LSTM模型
```python
class SimpleLSTM(nn.Module):
def __init__(self, vocab_size, embed_dim, hidden_dim, num_layers):
super(SimpleLSTM, self).__init__()
self.embedding = nn.Embedding(vocab_size, embed_dim)
self.lstm = nn.LSTM(embed_dim, hidden_dim, num_layers, batch_first=True)
self.fc = nn.Linear(hidden_dim, vocab_size)
def forward(self, x, h0=None, c0=None):
out = self.embedding(x)
out, (h_n, c_n) = self.lstm(out, (h0, c0))
out = self.fc(out)
return out
# 初始化模型、损失函数和优化器
model_lstm = SimpleLSTM(vocab_size, embed_dim, hidden_dim, num_layers)
criterion_lstm = nn.CrossEntropyLoss()
optimizer_lstm = torch.optim.Adam(model_lstm.parameters(), lr=0.001)
# 训练模型
for epoch in range(epochs):
for inputs, targets in dataloader:
optimizer_lstm.zero_grad()
outputs = model_lstm(inputs)
loss = criterion_lstm(outputs.view(-1, vocab_size), targets.view(-1))
loss.backward()
optimizer_lstm.step()
print(f'Epoch [{epoch+1}/{epochs}], Loss: {loss.item():.4f}')
```
### 3. 使用模型生成藏头诗
#### 生成藏头诗的辅助函数
```python
def generate_poem(model, start_chars, char_to_idx, idx_to_char, max_len=20):
model.eval()
generated = []
input_seq = [char_to_idx[char] for char in start_chars]
with torch.no_grad():
for i in range(max_len):
input_tensor = torch.tensor([input_seq[-len(start_chars):]]).unsqueeze(0)
output = model(input_tensor)
last_output = output[0, -1, :]
predicted_char_idx = torch.argmax(last_output).item()
generated.append(idx_to_char[predicted_char_idx])
input_seq.append(predicted_char_idx)
return start_chars + ''.join(generated)
# 生成藏头诗
start_chars = "李华"
generated_rnn = generate_poem(model, start_chars, char_to_idx, idx_to_char)
generated_lstm = generate_poem(model_lstm, start_chars, char_to_idx, idx_to_char)
print("RNN生成的藏头诗:")
print(generated_rnn)
print("\nLSTM生成的藏头诗:")
print(generated_lstm)
```
通过上述步骤,您可以使用RNN和LSTM模型生成与您姓名相关的藏头诗。希望这些代码和解释对您有所帮助!
阅读全文
相关推荐














