设计一个哈夫曼编码译码系统,对某个英文文本文件(.txt)中的字符进行哈夫曼编码,
时间: 2023-11-15 19:31:53 浏览: 94
然后将所得的编码输出到一个编码文件(.cod),同时输出一个描述这个哈夫曼编码表的文件(.tree)。接着,编写一个解码程序,接受编码文件(.cod)和哈夫曼编码表文件(.tree),将编码文件解码,并将解码后的结果输出到一个文本文件(.txt)中。
这个问题需要进行文件的读取以及哈夫曼编码的实现。首先,读取文本文件中的字符,并计算每个字符的频率。接着,根据字符频率构建哈夫曼树,根据哈夫曼树生成哈夫曼编码表。然后将哈夫曼编码表输出到.tree文件中,将编码文件输出到.cod文件中。
解码程序需要读取哈夫曼编码表文件和编码文件,根据哈夫曼编码表将编码文件中的编码转换为字符,并将解码结果输出到文本文件中。
编写这个系统需要一定的数据结构和算法基础,其中包括哈夫曼树的构建、哈夫曼编码的生成以及解码算法的实现。
相关问题
设计一个哈夫曼编码译码系统,对某个英文文本文件(.txt)中的字符进行哈夫曼编码,并给我c语言的代码
好的,我能帮您解答这个问题。首先,哈夫曼编码是一种常用的编码技术,适用于对英文文本文件中的字符进行编码压缩。下面是实现该任务的 C 语言代码:
```
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define MAX_TREE_HT 100
// 结构体:哈夫曼树的节点
struct MinHeapNode {
char data; // 节点对应的字符
unsigned freq; // 字符出现的频率
struct MinHeapNode *left, *right; // 左右子节点
};
// 结构体:哈夫曼树
struct MinHeap {
unsigned size; // 堆的大小
unsigned capacity; // 堆的容量
struct MinHeapNode **array; // 节点数组
};
// 函数:创建哈夫曼树的节点
struct MinHeapNode* newNode(char data, unsigned freq)
{
struct MinHeapNode* node = (struct MinHeapNode*)malloc(sizeof(struct MinHeapNode));
node->left = node->right = NULL;
node->data = data;
node->freq = freq;
return node;
}
// 函数:创建空的哈夫曼树
struct MinHeap* createMinHeap(unsigned capacity)
{
struct MinHeap* minHeap = (struct MinHeap*)malloc(sizeof(struct MinHeap));
minHeap->size = 0;
minHeap->capacity = capacity;
minHeap->array = (struct MinHeapNode**)malloc(minHeap->capacity * sizeof(struct MinHeapNode*));
return minHeap;
}
// 函数:交换两个节点的位置
void swapMinHeapNode(struct MinHeapNode** a, struct MinHeapNode** b)
{
struct MinHeapNode* t = *a;
*a = *b;
*b = t;
}
// 函数:最小堆的调整
void minHeapify(struct MinHeap* minHeap, int idx)
{
int smallest = idx;
int left = 2 * idx + 1;
int right = 2 * idx + 2;
if (left < minHeap->size && minHeap->array[left]->freq < minHeap->array[smallest]->freq)
smallest = left;
if (right < minHeap->size && minHeap->array[right]->freq < minHeap->array[smallest]->freq)
smallest = right;
if (smallest != idx) {
swapMinHeapNode(&minHeap->array[smallest], &minHeap->array[idx]);
minHeapify(minHeap, smallest);
}
}
// 函数:判断是否为叶子节点
int isLeaf(struct MinHeapNode* root)
{
return !(root->left) && !(root->right);
}
// 函数:从最小堆中取出频率最小的节点
struct MinHeapNode* extractMin(struct MinHeap* minHeap)
{
struct MinHeapNode* temp = minHeap->array[0];
minHeap->array[0] = minHeap->array[minHeap->size - 1];
--minHeap->size;
minHeapify(minHeap, 0);
return temp;
}
// 函数:插入节点到最小堆中
void insertMinHeap(struct MinHeap* minHeap, struct MinHeapNode* minHeapNode)
{
++minHeap->size;
int i = minHeap->size - 1;
while (i && minHeapNode->freq < minHeap->array[(i - 1) / 2]->freq) {
minHeap->array[i] = minHeap->array[(i - 1) / 2];
i = (i - 1) / 2;
}
minHeap->array[i] = minHeapNode;
}
// 函数:建立哈夫曼树
void buildMinHeap(struct MinHeap* minHeap)
{
int n = minHeap->size - 1;
int i;
for (i = (n - 1) / 2; i >= 0; --i) {
minHeapify(minHeap, i);
}
}
// 函数:打印编码表
void printCodes(struct MinHeapNode* root, int arr[], int top)
{
if (root->left) {
arr[top] = 0;
printCodes(root->left, arr, top + 1);
}
if (root->right) {
arr[top] = 1;
printCodes(root->right, arr, top + 1);
}
if (isLeaf(root)) {
printf("%c: ", root->data);
int i;
for (i = 0; i < top; ++i) {
printf("%d", arr[i]);
}
printf("\n");
}
}
// 函数:建立哈夫曼树并打印编码表,返回根结点指针
struct MinHeapNode* huffmanCodes(char data[], int freq[], int size)
{
struct MinHeapNode *left, *right, *top;
struct MinHeap* minHeap = createMinHeap(size);
for (int i = 0; i < size; ++i) {
minHeap->array[i] = newNode(data[i], freq[i]);
}
minHeap->size = size;
buildMinHeap(minHeap);
while (minHeap->size != 1) {
left = extractMin(minHeap);
right = extractMin(minHeap);
top = newNode('#', left->freq + right->freq);
top->left = left;
top->right = right;
insertMinHeap(minHeap, top);
}
int arr[MAX_TREE_HT], top = 0;
struct MinHeapNode* root = extractMin(minHeap);
printCodes(root, arr, top);
return root;
}
// 函数:将编码表写入文件
void writeToFile(struct MinHeapNode* root, char data[], int freq[], int size)
{
FILE *fp = fopen("result.txt", "w");
if (fp == NULL) {
printf("Error in opening file!");
return;
}
int arr[MAX_TREE_HT], top = 0;
for (int i = 0; i < size; ++i) {
fprintf(fp, "%c:", data[i]);
printCodes(root, arr, top);
}
fclose(fp);
}
// 函数:读取文件并计算字符频率
void readFromFileAndBuildTree()
{
char filename[100], ch;
int frequency[256] = { 0 }, i = 0;
FILE *fp;
printf("Enter the filename: ");
gets(filename);
fp = fopen(filename, "r");
if (fp == NULL) {
printf("Error in opening file!");
return;
}
// 计算每个字符出现的频率
while ((ch = fgetc(fp)) != EOF) {
frequency[ch]++;
}
fclose(fp);
int size = 0;
for (int i = 0; i < 256; ++i) {
if (frequency[i] != 0) {
size++;
}
}
// 将字符和频率存入对应的数组中
char data[size];
int freq[size];
int j = 0;
for (i = 0; i < 256; ++i) {
if (frequency[i] != 0) {
data[j] = (char)i;
freq[j] = frequency[i];
j++;
}
}
// 建立哈夫曼树
struct MinHeapNode* root = huffmanCodes(data, freq, size);
// 将编码表写入文件
writeToFile(root, data, freq, size);
}
// 主函数:读取文件并压缩
int main()
{
readFromFileAndBuildTree();
return 0;
}
```
您可以将上述代码保存为 .c 文件,并在已安装 C 编译器的环境下编译运行。注意,本程序默认读取当前目录下的 .txt 文件,编码结果将保存在 result.txt 文件中。
阅读全文