def DBSCAN(X, eps, min_Pts): k = -1 neighbor_list = [] # 用来保存每个数据的邻域 omega_list = [] # 核心对象集合 gama = set([x for x in range(len(X))]) # 初始时将所有点标记为未访问 cluster = [-1 for _ in range(len(X))] # 聚类 for i in range(len(X)): neighbor_list.append(find_neighbor(i, X, eps)) if len(neighbor_list[-1]) >= min_Pts: omega_list.append(i) # 将样本加入核心对象集合 omega_list = set(omega_list) # 转化为集合便于操作 while len(omega_list) > 0: gama_old = copy.deepcopy(gama) j = random.choice(list(omega_list)) # 随机选取一个核心对象 k = k + 1 Q = list() Q.append(j) gama.remove(j) while len(Q) > 0: q = Q[0] Q.remove(q) if len(neighbor_list[q]) >= min_Pts: delta = neighbor_list[q] & gama deltalist = list(delta) for i in range(len(delta)): Q.append(deltalist[i]) gama = gama - delta Ck = gama_old - gama Cklist = list(Ck) for i in range(len(Ck)): cluster[Cklist[i]] = k omega_list = omega_list - Ck return cluster
时间: 2024-02-14 18:35:17 浏览: 131
DBSCAN.rar_DBSCAN_clustering_dbscan k-means_dbscan matlab_dbscan
这是一个实现DBSCAN算法的Python函数。其中X是指定的数据集,eps是半径,min_Pts是密度阈值。函数返回一个列表cluster,用于存储每个样本所属的簇(-1表示噪声)。算法的具体实现如下:
1. 初始化一个空的簇集合,将所有样本标记为未访问状态。
2. 对于每个样本,计算其eps邻域,并记录邻域内点的个数。如果邻域内点的个数大于等于min_Pts,则将该样本标记为核心对象。
3. 随机选择一个核心对象,建立一个新的簇Ck,并将该核心对象从未访问集合gama中移除。
4. 利用BFS算法搜索核心对象的邻域,将邻域内的所有未访问样本加入队列Q中。
5. 如果队列Q不为空,则从队首取出一个样本,并计算其eps邻域。如果邻域内点的个数大于等于min_Pts,则将该样本标记为核心对象,并将其邻域内所有未访问点添加到队列Q中。将所有已经访问过的点从未访问集合gama中移除。
6. 将队列Q中的所有点加入簇Ck中,并将它们从未访问集合gama中移除。
7. 重复步骤3~6,直到所有核心对象都被访问过。
8. 返回簇集合。
阅读全文