Python实现nsag-2代码
时间: 2023-06-11 17:06:28 浏览: 207
Chan-Vese算法是一种图像分割算法,Python实现代码,有注释,方便理解和修改。
5星 · 资源好评率100%
NSGA-2(Non-dominated Sorting Genetic Algorithm 2)是一种多目标优化算法,可以用于解决具有多个目标函数的优化问题。下面是一个使用Python实现NSGA-2算法的示例代码:
```python
import random
# 定义目标函数
def obj_func(x):
f1 = x[0]**2 + x[1]**2
f2 = (x[0]-1)**2 + x[1]**2
return [f1, f2]
# 定义个体类
class Individual:
def __init__(self, x):
self.x = x
self.fitness = None
self.rank = None
self.crowding_distance = None
# 定义NSGA-2算法
def nsga2(population, n_parents):
# 计算每个个体的适应度值
for individual in population:
individual.fitness = obj_func(individual.x)
# 计算每个个体的支配集和被支配数
for individual1 in population:
individual1.dominated_set = []
individual1.n_dominated = 0
for individual2 in population:
if individual1.fitness != individual2.fitness:
if dominates(individual1.fitness, individual2.fitness):
individual1.dominated_set.append(individual2)
elif dominates(individual2.fitness, individual1.fitness):
individual1.n_dominated += 1
# 计算每个个体的排名和拥挤距离
fronts = [[]]
for individual in population:
if individual.n_dominated == 0:
individual.rank = 0
fronts[0].append(individual)
i = 0
while len(fronts[i]) > 0:
next_front = []
for individual1 in fronts[i]:
for individual2 in individual1.dominated_set:
individual2.n_dominated -= 1
if individual2.n_dominated == 0:
individual2.rank = i+1
next_front.append(individual2)
i += 1
fronts.append(next_front)
for front in fronts[:-1]:
for individual in front:
individual.crowding_distance = 0
for obj in range(2):
front = sorted(front, key=lambda individual: individual.fitness[obj])
front[0].crowding_distance = float('inf')
front[-1].crowding_distance = float('inf')
for i in range(1, len(front)-1):
front[i].crowding_distance += front[i+1].fitness[obj] - front[i-1].fitness[obj]
# 选择父代个体
parents = []
for i in range(n_parents):
front = random.choice(fronts[:-1])
parent = random.choice(front)
parents.append(parent)
# 交叉和变异
offspring = []
for i in range(n_parents):
parent1 = parents[i]
parent2 = parents[(i+1) % n_parents]
child = Individual([0, 0])
for j in range(2):
if random.random() < 0.5:
child.x[j] = parent1.x[j]
else:
child.x[j] = parent2.x[j]
if random.random() < 0.1:
child.x[0] += random.gauss(0, 0.1)
if random.random() < 0.1:
child.x[1] += random.gauss(0, 0.1)
offspring.append(child)
# 合并父代和子代个体
population.extend(parents)
population.extend(offspring)
# 保留前N个个体
population = sorted(population, key=lambda individual: individual.rank)
population = population[:n_parents]
return population
# 判断a是否支配b
def dominates(a, b):
return all(x1 <= x2 for x1, x2 in zip(a, b)) and any(x1 < x2 for x1, x2 in zip(a, b))
# 初始化种群
population = []
for i in range(100):
x = [random.uniform(-5, 5), random.uniform(-5, 5)]
individual = Individual(x)
population.append(individual)
# 迭代100次
for i in range(100):
population = nsga2(population, 100)
# 输出结果
for individual in population:
print(individual.fitness)
```
该示例代码实现了一个简单的二维优化问题,可以将其扩展到更多维度的问题。
阅读全文