flink keyBy process里面如果条件查询tidb表的数据的话该怎么合理的实现
时间: 2024-03-20 14:39:05 浏览: 135
在Flink中使用KeyBy操作并不会改变数据的分区方式,只是将相同的键值(Key)的数据分到同一个TaskManager中处理。如果您需要在KeyBy之后进行条件查询TiDB表的数据,可以使用Flink的`RichFlatMapFunction`或`RichMapFunction`,在函数的`open`方法中初始化TiDB连接,并在`flatMap`或`map`方法中执行查询操作。
以下是一个示例代码,演示了如何使用`RichFlatMapFunction`和TiDB连接器从TiDB表中查询数据:
```java
import org.apache.flink.api.common.functions.RichFlatMapFunction;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.table.api.EnvironmentSettings;
import org.apache.flink.table.api.TableResult;
import org.apache.flink.connector.jdbc.JdbcConnectionOptions;
import org.apache.flink.connector.jdbc.JdbcSink;
import org.apache.flink.connector.jdbc.JdbcStatementBuilder;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.table.api.Table;
import org.apache.flink.types.Row;
import org.apache.flink.shaded.guava18.com.google.common.collect.ImmutableList;
import java.sql.*;
import java.util.Properties;
public class QueryTiDBDataWithKeyBy {
public static void main(String[] args) {
// set up the execution environment
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
StreamTableEnvironment tableEnv = StreamTableEnvironment.create(
env,
EnvironmentSettings.newInstance().useBlinkPlanner().inStreamingMode().build()
);
// configure TiDB properties
Properties properties = new Properties();
properties.setProperty("database-url", "jdbc:mysql://<tidb_ip>:<tidb_port>/<database_name>");
properties.setProperty("username", "<tidb_username>");
properties.setProperty("password", "<tidb_password>");
properties.setProperty("driver", "com.mysql.jdbc.Driver");
// register TiDB table
tableEnv.executeSql(
"CREATE TABLE my_table (\n" +
" id BIGINT,\n" +
" name STRING,\n" +
" age INT\n" +
") WITH (\n" +
" 'connector' = 'jdbc',\n" +
" 'properties' = '" + properties.toString() + "',\n" +
" 'table-name' = 'my_table'\n" +
")"
);
// KeyBy operation
DataStream<Row> stream = tableEnv.toDataStream(tableEnv.from("my_table"))
.keyBy(row -> row.getField("age"));
// flatMap with TiDB query
DataStream<Row> result = stream.flatMap(new RichFlatMapFunction<Row, Row>() {
private Connection connection;
private PreparedStatement statement;
@Override
public void open(Configuration parameters) throws Exception {
super.open(parameters);
connection = DriverManager.getConnection("jdbc:mysql://<tidb_ip>:<tidb_port>/<database_name>", "<tidb_username>", "<tidb_password>");
statement = connection.prepareStatement("SELECT * FROM my_table WHERE age > ?");
}
@Override
public void flatMap(Row row, Collector<Row> collector) throws Exception {
statement.setInt(1, (int) row.getField(0));
ResultSet resultSet = statement.executeQuery();
while (resultSet.next()) {
collector.collect(Row.of(resultSet.getLong(1), resultSet.getString(2), resultSet.getInt(3)));
}
}
@Override
public void close() throws Exception {
super.close();
statement.close();
connection.close();
}
});
// print the result to console
result.print();
try {
env.execute();
} catch (Exception e) {
e.printStackTrace();
}
}
}
```
在上面的示例中,我们首先设置了TiDB连接属性,并在Flink中注册了TiDB表。然后,我们使用`keyBy`操作将数据按照年龄分组,并在`flatMap`方法中使用TiDB连接器从表中查询数据。最后,我们将结果打印到控制台。
请注意,在上面的示例中,我们使用了`RichFlatMapFunction`,这是因为在`open`方法中需要初始化TiDB连接,而在`flatMap`方法中需要执行查询操作。如果您使用`FlatMapFunction`,则无法在`open`方法中初始化TiDB连接。
阅读全文