densenet加入inception
时间: 2023-08-04 15:02:38 浏览: 59
将DenseNet和Inception结合起来,可以得到一种新型的深度卷积神经网络模型,称为DenseInception网络。在DenseInception网络中,每个Dense block内部包含多个分支,每个分支使用不同的卷积核大小和卷积层的数量,以提高网络的表示能力。同时,DenseInception网络中的每个分支都使用密集连接,以提高信息流动的效率。
DenseInception网络结合了DenseNet和Inception的优点,既可以有效地利用低维特征,又可以捕捉高层次的语义信息。这种网络结构在许多计算机视觉任务中都取得了非常好的性能,例如图像分类、目标检测和语义分割。
相关问题
densenet加入inception代码实现
以下是使用PyTorch实现的DenseNet和Inception结合的代码:
```python
import torch
import torch.nn as nn
class Inception(nn.Module):
def __init__(self, in_channels):
super(Inception, self).__init__()
self.branch1x1 = nn.Conv2d(in_channels, 16, kernel_size=1)
self.branch5x5_1 = nn.Conv2d(in_channels, 16, kernel_size=1)
self.branch5x5_2 = nn.Conv2d(16, 24, kernel_size=5, padding=2)
self.branch3x3_1 = nn.Conv2d(in_channels, 16, kernel_size=1)
self.branch3x3_2 = nn.Conv2d(16, 24, kernel_size=3, padding=1)
self.branch3x3_3 = nn.Conv2d(24, 24, kernel_size=3, padding=1)
self.branch_pool = nn.Conv2d(in_channels, 24, kernel_size=1)
def forward(self, x):
branch1x1 = self.branch1x1(x)
branch5x5 = self.branch5x5_1(x)
branch5x5 = self.branch5x5_2(branch5x5)
branch3x3 = self.branch3x3_1(x)
branch3x3 = self.branch3x3_2(branch3x3)
branch3x3 = self.branch3x3_3(branch3x3)
branch_pool = nn.functional.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
branch_pool = self.branch_pool(branch_pool)
outputs = [branch1x1, branch5x5, branch3x3, branch_pool]
return torch.cat(outputs, dim=1)
class DenseBlock(nn.Module):
def __init__(self, in_channels, growth_rate, num_layers):
super(DenseBlock, self).__init__()
self.layers = nn.ModuleList()
for i in range(num_layers):
self.layers.append(self.build_layer(in_channels + i*growth_rate, growth_rate))
def build_layer(self, in_channels, out_channels):
layer = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True)
)
return layer
def forward(self, x):
features = [x]
for layer in self.layers:
x = layer(torch.cat(features, dim=1))
features.append(x)
return torch.cat(features, dim=1)
class Transition(nn.Module):
def __init__(self, in_channels, out_channels):
super(Transition, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1)
self.pool = nn.AvgPool2d(kernel_size=2, stride=2)
def forward(self, x):
x = self.conv(x)
x = self.pool(x)
return x
class DenseNet_Inception(nn.Module):
def __init__(self, in_channels, growth_rate=32, block_layers=[6, 12, 24, 16], num_classes=10):
super(DenseNet_Inception, self).__init__()
self.conv1 = nn.Conv2d(in_channels, 64, kernel_size=7, stride=2, padding=3)
self.pool1 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.block1 = DenseBlock(64, growth_rate, block_layers[0])
self.trans1 = Transition(64 + block_layers[0]*growth_rate, 128)
self.block2 = nn.Sequential(
DenseBlock(128, growth_rate, block_layers[1]),
Inception(128 + block_layers[1]*growth_rate)
)
self.trans2 = Transition(152, 256)
self.block3 = nn.Sequential(
DenseBlock(256, growth_rate, block_layers[2]),
Inception(256 + block_layers[2]*growth_rate)
)
self.trans3 = Transition(280, 512)
self.block4 = nn.Sequential(
DenseBlock(512, growth_rate, block_layers[3]),
nn.BatchNorm2d(512 + block_layers[3]*growth_rate),
nn.ReLU(inplace=True),
nn.AdaptiveAvgPool2d((1,1))
)
self.fc = nn.Linear(512 + block_layers[3]*growth_rate, num_classes)
def forward(self, x):
x = self.conv1(x)
x = self.pool1(x)
x = self.block1(x)
x = self.trans1(x)
x = self.block2(x)
x = self.trans2(x)
x = self.block3(x)
x = self.trans3(x)
x = self.block4(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
```
这里实现的是一个DenseNet-121和Inception结合的网络,其中DenseNet-121的结构和官方实现类似,但是在第二个和第三个密集块之后加入了Inception模块。同时,由于Inception模块输出通道数为96,因此在第一个转换层之后输出通道数需要设置为128。由于Inception模块的存在,最后一个密集块的输出通道数也需要根据实际情况进行调整,这里设置为512。最后,全连接层的输入特征维度需要加上最后一个密集块输出的特征维度,即512 + 16*growth_rate,其中growth_rate为每个DenseBlock中每层输出的通道数。
densenet加入inception同时加入动态卷积
DenseNet 和 Inception 是两种不同的深度学习模型架构,它们的设计思想和结构都有所区别。DenseNet 的主要特点是通过密集连接(Dense Connection)实现信息流动,而 Inception 则是通过多个不同尺寸的卷积核并行操作来提取特征。
如果要将 DenseNet 和 Inception 结合起来,可以考虑在 DenseNet 模型中引入 Inception 模块,例如使用 Inception-v4 模型中的 Inception-C 模块。这样可以在 DenseNet 的基础上进一步提升模型的表现。
至于动态卷积,它是一种可以自适应地选择卷积核大小和形状的卷积操作。动态卷积可以根据输入数据的特征自动调整卷积核的大小和形状,从而更好地适应不同的输入数据。因此,将动态卷积引入 DenseNet-Inception 模型中可以进一步提高模型的表现,并且使得模型更加灵活和适应性更强。
阅读全文