CBOW的模型网络结构是先解码还是先编译?
时间: 2024-05-20 13:11:46 浏览: 51
CBOW模型的网络结构并不涉及编译和解码的过程。CBOW模型是一种基于词向量的语言模型,其主要目的是通过上下文预测目标词汇,因此其网络结构主要包括输入层、隐藏层和输出层。输入层接收上下文词向量的加和作为输入,经过隐藏层的线性变换和非线性激活后,最终输出目标词汇的概率分布。因此,CBOW模型的网络结构是先输入,再进行线性变换和非线性激活,最后输出结果。
相关问题
cbow模型代码实现
CBOW(Continuous Bag-of-Words)模型是一种用于自然语言处理的神经网络模型,它的输入是上下文中的词汇,输出是中心词汇。CBOW 模型的代码实现如下:
```python
import numpy as np
from keras.preprocessing.text import Tokenizer
from keras.utils import to_categorical
from keras.models import Sequential
from keras.layers import Dense, Embedding, Lambda
# 设置超参数
vocab_size = 5000
embedding_dim = 100
window_size = 2
# 构建语料库
corpus = [
'I like playing soccer with my friends',
'He enjoys playing basketball on weekends',
'The cat loves drinking milk every morning'
]
# 将语料库转化为词向量矩阵
tokenizer = Tokenizer(num_words=vocab_size)
tokenizer.fit_on_texts(corpus)
sequences = tokenizer.texts_to_sequences(corpus)
# 构建训练数据集
x_train = []
y_train = []
for sequence in sequences:
for i in range(window_size, len(sequence) - window_size):
context = sequence[i-window_size:i] + sequence[i+1:i+window_size+1]
target = sequence[i]
x_train.append(context)
y_train.append(target)
x_train = np.array(x_train)
y_train = to_categorical(y_train, num_classes=vocab_size)
# 构建 CBOW 模型
model = Sequential()
model.add(Embedding(vocab_size, embedding_dim, input_length=window_size * 2))
model.add(Lambda(lambda x: np.mean(x, axis=1), output_shape=(embedding_dim,)))
model.add(Dense(vocab_size, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam')
# 训练 CBOW 模型
model.fit(x_train, y_train, epochs=50, verbose=1)
# 输出词向量矩阵
embeddings = model.get_weights()[0]
print(embeddings)
```
在上面的代码中,我们首先读取语料库,将其转化为词向量矩阵,并且根据窗口大小构建训练数据集。然后,我们构建 CBOW 模型,其中使用了 Embedding 层和 Lambda 层,最后将模型训练得到的词向量矩阵输出。
Java 实现CBOW模型
以下是一个使用Java实现CBOW模型的简单示例代码:
```java
import java.util.List;
import java.util.ArrayList;
import java.util.Random;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.factory.Nd4j;
import org.nd4j.linalg.indexing.NDArrayIndex;
public class CBOW {
private int vocabSize; // 词汇表大小
private int vectorSize; // 词向量维度
private int windowSize; // 窗口大小
private double learningRate; // 学习率
private INDArray syn0; // 输入层到隐层的权重矩阵
private INDArray syn1; // 隐层到输出层的权重矩阵
public CBOW(int vocabSize, int vectorSize, int windowSize, double learningRate) {
this.vocabSize = vocabSize;
this.vectorSize = vectorSize;
this.windowSize = windowSize;
this.learningRate = learningRate;
// 随机初始化权重矩阵
this.syn0 = Nd4j.rand(vocabSize, vectorSize, new Random(12345)).subi(0.5).divi(vectorSize);
this.syn1 = Nd4j.rand(vectorSize, vocabSize, new Random(12345)).subi(0.5).divi(vectorSize);
}
public void train(List<Integer> words) {
int len = words.size();
for (int i = 0; i < len; i++) {
int word = words.get(i);
// 获取上下文单词向量的平均值作为输入
INDArray x = Nd4j.zeros(vectorSize);
int cw = 0; // 上下文单词数量
for (int j = Math.max(0, i - windowSize); j < Math.min(len, i + windowSize + 1); j++) {
if (j ==
阅读全文